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Fostering conceptual and cognitive change in learners can be difficult. Students often
come to a learning situation with robust, implicit understandings of the material under
study. One explanation for the implicit nature of these understandings is a lack of
metaknowledge about the knowledge to be acquired. Helping learners create metaknowl-
edge may free paths to conceptual change. This paper proposes the use of fuzzy cognitive

Ž .maps FCMs as a tool for creating metaknowledge and exploring hidden implications of
a learner’s understanding. Two specific educational applications of FCMs are explored in
detail and recommendations are included for further investigations within educational
contexts. Q 2000 John Wiley & Sons, Inc.

‘‘So far as the laws of mathematics refer to reality, they are not certain. And so far as
they are certain, they do not refer to reality.’’ A. Einstein

I. INTRODUCTION

Ž .Fuzzy cognitive mapping FCM is a tool for formalizing understandings of
conceptual and causal relationships.1 By combining conceptual mapping tools
with fuzzy logic and other techniques originally developed for neural networks,
FCMs allow for the representation and formalization of soft knowledge domains
Ž .e.g., politics, education . This paper explores FCM procedures and proposes
two methodologies for developing FCMs in educational organization settings.
Other potential applications in education are explored and directions for future
research are included.

To apply FCMs in education requires a basic understanding of the theoreti-
cal foundation of cognitive mapping. This paper presents a brief review of that
theoretical foundation, as well as some related research literature. Advantages
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of conceptual and semantic mapping are explored. Inherent weaknesses in
current approaches are described. Most current mapping systems use a crisp

Ž .approach truth values of 1 or 0 to conceptual understanding and causal
mapping. Crisp logic cannot accurately represent human understanding, espe-
cially in soft knowledge domains.

Fuzzy logic allows us to represent truth values on a continuous scale from 0
to 1, providing mathematical methods for representing concepts and causalities

Ž .that are true to some degree neither wholly true nor false . Consequently, the
law of the excluded middle does not apply in fuzzy logic. Most human reasoning
is fuzzy, with crisp distinctions as the special case of fuzzy logic. For example,
when we say the water is very dirty, there is no hard line between dirty and ¨ery
dirty. At some point the water is both dirty and very dirty. Fuzzy logic allows us
to represent this idea mathematically and, thus, it becomes machine encodeable.

FCMs combine the strengths of cognitive maps with fuzzy logic. By repre-
senting human knowledge in a form more representative of natural human
language than traditional concept mapping techniques, FCMs ease knowledge
engineering and increase knowledge-source concurrence. FCMs can also be
modeled on computers, thus allowing for dynamic modeling of cognitive systems.2

Two methods for facilitating the creation of FCMs are presented in this
paper. Both are in the early stages of testing. The educational field testing
includes trials of a method for group knowledge acquisition and for individual
knowledge acquisition. In addition, a computer modeling system is presented for
the development and analysis of FCMs.

II. CONCEPTUAL CHANGE

Learners’ naive conceptions have been well studied.3,4 It is widely accepted
within the domain of cognitive psychology that students come to school with
some form of conceptualization of the natural world and their place in it.
Frequently, however, these conceptions are not scientifically accurate. Instead,
these conceptions represent a theory that is useful in everyday experience.5

Naive theories are based on interaction with the everyday world. A child who
repeatedly drops items on the floor is building an implicit theory of gravity. A
child who tries to manipulate her parents into taking her for ice cream is
building an implicit theory of human behavior.

Naive understandings display many of the characteristics of implicit knowl-
Ž . Ž .edge. Implicit knowledge: a is characterized by specificity of transfer, b is

Ž .associated with incidental learning conditions, c gives rise to a phenomenal
Ž .sense of intuition, and d remains robust in the face of time, psychological

disorder and secondary tasks.6 Naive understandings meet many of the same
criteria. They are learned incidentally, they give rise to a sense of ‘‘knowing,’’
and remain robust in the face of time and schooling.3 These naive understand-
ings can be very difficult to diagnose and change.4

Much of the research on naive understandings has been in science educa-
tion. The difficulty of changing conceptions of the natural world that have been
formed over many years is well documented. Situations in which students are
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unable to process that which they are not expecting create opportunities for
implicit learning. For example, when presented with science instruction, stu-
dents often are looking to confirm what they ‘‘know’’ already, with the result
both extremely selective attention and distortion of information provided during
instruction.

Berry and Dienes6 argue that implicit learning is in part characterized by a
lack of metaknowledge. That is, we are unaware that we know what we know.
The knowledge is unavailable in free recall tasks, but is generally available in
performance, on forced choice tests and constrained answer tasks.6 In order to
make implicit knowledge available to the learner, some structured task must be
available to elicit the knowledge from the learner.

Concept, or cognitive, mapping represents a possible tool for developing
such a structured environment. The next section explores some of the methods
currently used to create graphical formalisms of concepts.

III. CONCEPT MAPPING

To promote conceptual change, some researchers have proposed using
graphical representations of a specified conceptual domain. The current use of
concept mapping within education has its roots in research conducted at Cornell
that focused on conceptual changes in students over a 12 year period.7 This
research required a method to compare conceptions over time and between
learners. The Cornell researchers developed a system of representing concep-
tual knowledge graphically: circles for concepts and arrows for the links between
them.

A review of the literature8 ] 10 provides several definitions of concept maps,
also known as cognitive maps. Two factors are common in these definitions:
Ž .a all of the authors reviewed define a cognitive map as a graphical representa-

Ž .tion, and b most include some aspect of subjectivity. A graphical representa-
tion is fundamental to the idea of concept mapping. In one of the earliest
references, Axelrod8 developed a system for representing causal relationships in
social science domains. The system represented concepts in sociology and
political science as nodes in a directed graph. The nodes were connected by
arrows that were assigned to represent positive or negative causal relationships.
The other common factor in the definition of cognitive mapping is the subjectiv-
ity of the map. Irvine9 describes concept mapping as the individual’s diagram-
matic interpretation of ideas. The definition from Park and Kim10 concisely
encapsulates many of these definitions.

The cognitive map graphically represents interrelationships among a variety of factors. It
is a representation of the perceptions and beliefs of a decision maker or expert about
hisrher own subjective world, rather than objective reality.11

Since the development of the graphical system at Cornell, there have been
several studies conducted on the efficacy of using concept maps as teaching and
learning tools. For example, Jegede, Alaiyemola, and Okebukola12 report that
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students in Nigeria who used concept maps documented significantly higher
mean scores on an achievement test for the subject matter studied. Other
studies have concentrated on the use of concept mapping in teacher education.
Novak7 notes that most science teachers understand science to be a large body
of information to be mastered, as opposed to a method for constructing new
knowledge. Novak reports that concept mapping plays an important role in
facilitating the change of science teachers’ perception of science and the
purpose of science education.

There are several factors that contribute to the power of cognitive mapping
in learning. Johnson, Goldsmith, and Teague13 describe two values categories of
cognitive maps: the stimulus value and the structural advantage. The stimulus
value is inherent in the graphical representation. Learners can easily see the
global organization of the represented concepts. Graphical representations also
allow for the organization of complex domains for learners and designers alike.
The network structure of a concept map allows the simultaneous display of all
the important relationships.13 The structural advantage is relative to the assess-
ment of pair-wise ratings. Johnson, Goldsmith, and Teague13 report that assess-
ing network representations of student understanding resulted in more valid
measures than assessing pair-wise comparisons of concepts.

Thagard5 proposes a system of conceptual change based on his historical
research of scientific revolutions. The system delineates five levels of conceptual
change, ranging from the simple to the complex:

Ž .1 Addition of concepts.
Ž .2 Deletion of concepts.
Ž .3 Simple reorganization of concepts in the kind-hierarchy or part-hierarchy which

results in new kind-relations and part-relations.
Ž .4 Re¨isionary reorganization of concepts in the hierarchies, in which old kind-rela-

tions or part-relations are replaced by different ones.
Ž .5 Hierarchy reinterpretation, in which the nature of the kind-relation or part-rela-

tion that constitutes a hierarchy changes.

ŽKind-relations define members of a concept i.e., a whale is a kind of
. Žmammal , while part-relations define the characteristics of a member i.e.,

.whales have flippers . Concept maps make visible the potential for conceptual
change within a learner. Thagard,5 himself, makes good use of concept maps to
demonstrate the conceptual change undergone by the scientists he studied.

Pressley and McCormick’s14 review of the literature on multiple representa-
tions in science revealed a common process for developing concept maps. This
process is briefly outlined:

Ž .1 Key words and phrases are identified from the reading.
Ž .2 Key concepts are ordered from the most general to the most specific.
Ž .3 The concepts are then clustered using two criteria. Concepts that interrelate are

Žgrouped; concepts are classified with respect to their level of abstraction i.e.,
.general concepts to specific ones . All of the concepts are then arranged loosely

in a two-dimensional array with abstractness defining one dimension and main
ideas defining the second dimension.
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Ž .4 Related concepts are then linked with lines, which are labeled to specify the
relationship between concepts.

Thus, a map of the domain is created, with key ideas linked by nodes that
Ž .describe the type of relationship between them see Fig. 1 . The map, however,

is static. It represents the crystallized, declarative knowledge of a domain. The
map can be used to understand some forms of the conceptual relationships.
Dynamic, causal relationships, however, are beyond the scope of the methodol-
ogy described by Pressley and McCormick.14 Cognitive maps represent formal,

Ž .bivalent true or false logical relationships. This is acceptable in ‘‘hard’’
knowledge domains like physics or mathematics where the nature of the
knowledge in the domain is usually binary. In most domains, however,

Žthe knowledge base is uncertain, or fuzzy. Social studies e.g., politics, interna-
.tional relations , management science, and the study of art or literature are all

‘‘soft’’ knowledge domains, where uncertainty and degrees of truth are more
common. Thus, the true nature of these domains cannot be understood from
bivalent, or true]false, concept maps.

Cognitive maps also represent a form of distributed intelligence. They are
artifacts constructed to off-load complex tasks, structure activity, save mental
work, and avoid error.15 By creating a graphical representation of a domain,
cognitive maps save the user from having to hold the representation in working
memory, thus freeing cognitive resources for interpretation and analysis of the
content.

In the remainder of this paper, we explore the extension of these concept
Ž . 2maps as fuzzy cognitive maps FCMs , a tool developed by Kosko, for the

representation of dynamic causal knowledge within soft knowledge domains.

Ž 14.Figure 1. Fuzzy cognitive map. Author interpretation of Pressley and McCormick .
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Ž 1.Figure 2. FCM for decisions about driving speed. Adapted from Kosko .

IV. FUZZY COGNITIVE MAPS

Ž .Fuzzy cognitive maps FCMs and concept maps have similar applications in
education. There are two important differences between traditional concept
maps and FCMs: fuzzy logic and feedback. Uncertain or soft knowledge domains
can be represented with fuzzy logic. Kosko2 originally developed FCMs to
represent concepts in military science, but his since gone on to demonstrate
their usefulness in representing arguments in sociology and political science.
Figure 2 is an adaptation of a map developed by Kosko1 representing decisions
about driving speed on a California highway. The dynamic nature of the FCM
makes it a useful tool for discovering hidden relationships between concepts.2

Variable input values can be entered into the nodes of the map in Figure 2 and
analyzed via computer. The feedback systems within the map will gradually
converge on a solution, or limit cycle. Interpreting the activation level of each
node reveals relationships within the system. These features of FCMs will be
explored in the next two sections.

Fuzzy logic is a system for representing uncertainty, or possibility. The
formal extension of the original possibility theory created in the 1920s by
Lukasiewicz16 was developed by Zadeh.17 A generalization of traditional, biva-
lent, Aristotelian logic, fuzzy logic creates a system for mathematically repre-

Ž .senting systems with natural linguistic variables e.g., tall, little .
Traditional binary logic requires that a statement must be either true or

false. An animal can be a cat or it is not a cat. The world of traditional logic is
black or white. This is known as the law of the excluded middle: there is no

Ž .option between 100% true and 100% false see Fig. 3 . The problem with a
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Figure 3. Binary logic representation.

binary system is that it does not allow for accurate representations of the way
humans perceive and represent their world. Formal representations of human
knowledge, like those described in the previous section, typically rely on binary
logic.16

Fuzzy logic ignores the law of the excluded middle and allows for represen-
tations that are both true and false.1 Terms like age, height, and intelligence are
fuzzy variables; they have no exact definition and allow for degrees of member-

Žship. Fuzzy variables, or linguistic variables, have fuzzy values e.g., young, short,
.bright .

A fuzzy set is a generalization of an ordinary set by allowing a degree of
w xmembership for each element. A membership degree is a real number on 0, 1 .

In extreme cases if the degree of membership is 0 the element does not belong,
and if 1 the element belongs 100% to the set.18

Thus, a person might be considered tall to a 0.9 degree if they were 6950
tall. Membership value is determined by a function that represents changing

Ž .membership as a value changes see Fig. 4 .

Figure 4. Fuzzy and crisp sets.
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Kosko2 claims it is possible to view thought as a fuzzy set, not as a language
Ž .string. Given some space X of primitives i.e., sensibilia , a concept is some

fuzzy subset of that space. This implies that for any given set of primitives, an
infinitude of fuzzy subsets is possible. Perhaps the use of fuzzy logic allows us to
create representations of human thought that are closer to the actual processes.

FCMs utilize fuzziness in several ways. First, the concepts themselves are
fuzzy. In the example described in Figure 2, all of the nodes are fuzzy. Bad
weather is a matter of degree, a light sprinkle to a hurricane. Freeway conges-
tion can be heavy or light or anything in between. The causal edges themselves
describe fuzzy functions. Auto accidents affect a driver’s risk aversion to a small
degree, while they affect patrol frequency to a large degree. Finally, the initial
conditions that are inputs for the system are themselves fuzzy; they represent
the initial degree of activation of a given node. The fuzziness in FCMs thus
allows for the representation of ill-defined, complex concepts that are described
using linguistic variables. The only price to pay is a fuzzy output.

A. Causality and FCMs

Kosko19 describes FCMs as fuzzy directional diagrams that illustrate feed-
back. Like traditional causal concept maps, FCMs have nodes that represent
variable concepts. The links between the concepts are signed q or y to
represent the nature of the relationship between nodes. Fuzzy logic allows the
representation of fuzzy concepts and degree of causality. Feedback allows the
user to explore the hidden properties of the map. By creating a formal represen-
tation of causality, FCMs can be used to create and explore models of dynamic
events and search for causal explanation.

The most important difference between the concept maps which Pressley
and McCormick14 describe and FCMs is the temporal and causal nature of the
FCM. FCMs express causality over time and allow for causality effects to
fluctuate as input values change. Nonlinear feedback can only be modeled in a
time-based system. FCMs are intended to model causality, not merely semantic
relationships between concepts. The latter relationships are more appropriately
represented with semantic networking tools like SemNet. By modeling causality
over time, FCMs facilitate the exploration of the implications of complex
conceptual models, as well as representing them with greater flexibility.

There is evidence to suggest that temporal mapping may improve learning.
Lambiotte et al.20 report that providing students with maps of procedures or
processes, rather than semantic conceptual maps, improved learning; especially
for lower ability students. FCMs are a tool for representing a dynamic process
and modeling the process in real-time.

Investigating the results of an FCM model can also facilitate the discovery
of causal explanations.21 FCMs can be used as an artifact for graphically
representing, and dynamically modeling, causal links. Computer modeling facili-
tates playing ‘‘what-if’’ games; allowing the learner to explore multiple con-
trastive questions. Unlike traditional concept maps, the dynamic properties of
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an FCM allow the user to play what-if games with the representation. By
modeling the system on a computer, the user can rapidly explore a range of
possibilities and potential system behaviors. Holding some parameters constant
and varying other allows for the exploration of complex relationships that might
not otherwise be investigated. Multiple perspectives from different experts may
be explored by learners, offering them a greater range of perspectives than the
current single perspective represented by computer-based instructional systems.

According to Miller,21 for an explanation of any causal relationship to be
Ž .appropriate it must meet two conditions: a the factors modeled must actually

Ž .exist and be causally sufficient in typical cases under investigation, and b the
pattern modeled must be the most accurate and reasonable place to stop
searching for alternative answers. Finding such a pattern for complex relation-
ships is a fundamentally impossible task. The search space of potential causal
patterns for a given phenomena is nearly infinite, and is surely larger than most
of us would care to explore. Thus, we rely on our current best guess, a causal

Ž .pattern that is a local minima or maxima, depending on your point of view . By
distributing the cognitive load within the environment, FCMs expand the possi-
ble search space for reasonable patterns. FCMs balance the tendency of ‘‘best
guess’’ by dynamically modeling the system, thus speeding the process of
discerning which of the possible maps represent the given data and hold some
degree of explanatory coherence.

Thagard’s5 levels of conceptual change correspond to the degree of reorga-
nization of a given conceptual map. It is obvious when concepts are added or
deleted. Simple reorganization creates new types of edges that can connect
nodes. Revionary reorganization replaces one type of edge with another, and
hierarchy reinterpretation changes the fundamental hierarchical relationship
between nodes. Each of these processes can be supported with a visual repre-
sentation. Additional research is needed to demonstrate the conditions under
which this type of support is most effective.

Pressley and McCormick14 emphasize the potential important cognitive
outcomes if concept mapping does lead students to identify relationships they
would otherwise miss and that identification allows the students to construct
interpretations not obvious without mapping. The dynamic nature of the FCM
makes it a useful tool for discovering hidden relationships between concepts.22

As discussed previously, FCMs represent an artifact for distributing cogni-
tion. The nonlinearity of a complex FCM is very difficult for us to manage
consciously without additional support. The hidden relationships between nodes
Ž .relationships that are not immediately salient are graphically represented in an

ŽFCM e.g., the price of a postage stamp affects the cost of mass mailing which
affects advertising budgets, but only after a time lag, and only if the economy

.is anemic . . . . ‘‘The resonant limit cycle . . . is a hidden pattern in the causal
edges E. The hidden patterns in an expert’s FCM presumably correspond
to the expert’s characteristic set of responses to what-if questions. As with an
expert’s answer, the resonant hidden pattern can be tested against the available
evidence and the responsible FCM can be modified accordingly as needed.’’24
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B. Implementation

Representing and manipulating FCMs mathematically is not difficult. A
Ž .given FCM with C n concepts can be represented in an N = N matrix.

Ž .Causality is represented by some nonlinear usually sigmoidal edge function
Ž .e C , C , which describes the degree to which C causes C . The edge functioni j i j

w xoccurs over the bipolar interval y1, 1 , as edges can be inhibitory or excitory.
Ž . w x 19Using the notion of disconcepts ; C , the unit interval 0, 1 can be retained.

Thus, what results is a matrix with causality between concepts represented by
some real number between 1 and 0. A row, i, represents the causality between
concept i and all other concepts in the map. No concept is assumed to cause
itself, thus the diagonal is zeroed. See Table I for an example of a simple FCM
matrix.

� 4Traditional cognitive mapping relies on a crisp valued edge function of 1, 0
� 4or y1, 1 . Thus, when an expert creates a concept map, they sign the edges as

either positive or negative. FCM representation create a weighted edge function
w x w xover 1, 0 or 1, y1 . Fuzziness, therefore, allows the developer to capture more

fine grain information about the representation. It is possible to ask the expert
to assign a real number weight to the edge, but this is difficult and usually
unnecessary. Instead, an expert can use linguistic modifiers, which are then
converted into fuzzy functions. Fuzzy inputs can be processed systematically via
fuzzy causal algebra.23

Expert systems development typically involves only one expert due to
difficulties with maintaining a tree structure and search limitations.24 Kosko19

has developed a mathematical method for combining the FCMs of multiple
experts to represent a ‘‘field’’ view. Imagine combining FCMs from educational
experts all over the world; creating a giant FCM for generating curriculum and
research.

FCMs can be combined by representing them as matrices. Each expert’s
map is represented as a matrix the size of the total number of unique concepts
presented by all of the experts. The matrices are then added together, with the
common links naturally achieving more weight. For example, Figure 5 repre-
sents an individual’s FCM generated during a pilot test of the group process
described later. The corresponding matrix is presented in Table II. The addition

Ž .of a second participant see the matrix in Table III is represented in Figure 6.
In this example, both participants used the same concepts, as those were

Table I. A Simple FCM Matrix.

To]From Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

Node 1 0 1 1 0 0 0
Node 2 0 0 1 0 0 y1
Node 3 0 1 0 1 1 0
Node 4 0 0 1 0 1 0
Node 5 0 0 0 0 0 y1
Node 6 0 0 0 0 0 0



APPS AND FCMs 11

Figure 5. FCM of the use of distance education for participant a2.

Table II. FCM Matrix for Participant a2.

Use of
Admin. Faculty Human Faculty Success of Distance

To]From Support Concern Resources Awareness Program Ed.

Admin. support 0 4 0 0 0 0
Level of faculty 0 0 0 0 0 y5

concern
Level of human 0 5 0 0 0 0

resources
Level of faculty 0 3 0 0 0 3

awareness
Success of program 0 0 0 1 0 3
Use of distance ed. 0 0 0 0 0 0

Ž .Table III. Additive Matrix Combined for Participants a2 and a3 .

Use of
Admin. Faculty Human Faculty Success of Distance

To]From Support Concern Resources Awareness Program Ed.

Admin. support 0 4 4 0 0 0
Level of faculty 0 0 0 0 0 y3

concern
Level of human 0 0 0 0 5 0

resources
Level of faculty 0 3 0 0 0 3

awareness
Success of program 0 0 0 3 0 4
Use of distance ed. 0 0 0 0 3 0
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Figure 6. FCM of the use of distance education for participants a2 and a3.

generated in a group session. The resulting additive matrix is found in Table III.
Notice that the links representing agreement have larger values, and the areas
of disjunction or disagreement have smaller values. If there are k experts, and
only one expert includes a given edge, the maximum value for that edge is 1rk.

Ž . w x w xThe results can then be normalized averaged over 0, 1 or y1, 1 .
In this system, if two experts perfectly disagree, they cancel each other out

Ži.e., if expert A says that edge e is 1 and expert B says that e is y1, thei i
.resulting edge equals 0 . Large sample sizes tend to produce stable connection

strengths.22 Representations of the knowledge of multiple experts has long been
a goal in expert systems development. By creating fuzzy knowledge structures,
FCMs finally allow us to achieve this goal. Indeed, if large sample sizes produce
stable connection strengths, then the more experts, the better.

An initial input activates the matrix. The initial state of the concepts is
entered as a fuzzy vector. Inference proceeds by nonlinear spreading activation.22

The initial activation is allowed to reverberate through the system until it
converges on a limit cycle. See Table IV. The limit cycle may be a point solution,
a cyclical attractor, or a chaotic strange attractor.22 In other words, the output

Ž . Ž .may be a steady state A, A, A, . . . , a cycle A, B, C, A, B, C, . . . , or a chaotic
Ž .attractor A, C, B, D, B, A, D, C, . . . . Figure 7 presents a graph of the output

from one FCM. The transition to the limit cycle is evident as each line
straightens and the system converges on the limit cycle.

Since FCMs are machine modeable and dynamic, they are also machine
tunable. As the FCM is run through multiple what-if scenarios, adjustments to
the nodes and edges can be made to gradually force the map to fit an expected
output. Kosko22 proposes a system of ‘‘adaptive inference through concomitant
variation.’’25 Instead of using simple Hebbian neural learning algorithms to tune
the model, Kosko uses a differential Hebbian learning law that measures
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Table IV. Activated Matrix.

Use of
Admin. Faculty Human Faculty Success of Distance

To]From Support Concern Resources Awareness Program Ed.

Admin. support 0 4 0 0 0 0
Level of faculty 0 0 0 0 0 y5

concern
Level of human 0 5 0 0 0 0

resources
Level of faculty 0 3 0 0 0 3

awareness
Success of program 0 0 0 1 0 3
Use of distance ed. 0 0 0 0 0 0

Use of
Admin. Faculty Human Faculty Success of Distance

To]From Support Concern Resources Awareness Program Ed.

Admin. support 0 4 4 0 0 0
Level of faculty 0 0 0 0 0 y3

concern
Level of human 0 0 0 0 5 0

resources
Level of faculty 0 3 0 0 0 3

awareness
Success of program 0 0 0 3 0 4
Use of distance ed. 0 0 0 0 3 0

Use of
Admin. Faculty Human Faculty Success of Distance

To]From Support Concern Resources Awareness Program Ed.

Admin. support 0 4 2 0 0 0
Level of faculty 0 0 0 0 0 y4

concern
Level of human 0 2.5 0 0 2.5 0

resources
Level of faculty 0 3 0 0 0 3

awareness
Success of program 0 0 0 2 0 3.5
Use of distance ed. 0 0 0 0 1.5 0

changes in the environmental parameters. A simple Hebbian law would be
something like:

;X s yX q + C X e q IŽ .i i j j j ji i

where ;X : is the activation level of some node i, yX : is the passive causali i
Ž .decay parameter, C : is a sigmoid function, + C X e : is the path-weightedj j j j ji

internal feedback, I : is the external output.i
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Figure 7. Graph of an activated matrix converging on a limit cycle.

A differential Hebbian learning law, on the other hand, is represented by:

e s ye q C 9C 9
;x ;xji ji i j i j

where e s the edge function between concept C and Cji i j

CX s dC rdxi i j

ŽSimulations show that while the simple Hebbian learning law which
. 25correlates activations to output produces ‘‘spurious causal conjectures,’’ the

differential Hebbian law causes e to converge on an exponentially weightedji
average of correlated change.

Using such techniques, FCMs can be gradually improved over time. Non-
salient improvements that would probably have been missed by a human
observer may be added to the map as it becomes more and more accurate.

C. Advantages of FCMs

The previous sections have explored several differences between the con-
cept mapping process described by Pressley and McCormick14 and the FCM
methodologies described in this paper. First, concepts in an FCM are not
arrayed according to abstractness or centrality of the idea. The centrality of an
idea can be naturally determined after the map has been completed. Centrality
becomes a function of the number of links to and from a given node and the
weight of those links. The abstractness of an idea can be interpreted as a
function of its fuzziness. The more abstract an idea, the more fuzzy subsets it
contains. Hierarchical conceptual relationships can be embedded within a FCM
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node. The node then becomes an embedded FCM within the larger framework.
The resulting signal strength from the node is a function of the embedded
processing. These features offer several advantages to FCMs over traditional
mapping methods. FCMs have these specific advantageous characteristics:

Ž .1 FCMs capture more information in the relationships between concepts.
Ž .2 FCMs are dynamic.
Ž .3 FCMs express hidden relationships.
Ž .4 FCMs are combinable.
Ž .5 FCMs are tunable.

V. FCMs IN PRACTICE

Potential applications of FCMs are very broad. For the purposes of this
paper, we will investigate two categories of potential applications. First, FCMs
may be used in an organizational context to promote investigation by partici-
pants of their individual, deeply held assumptions, and as a tool for facilitating
the adoption of new innovations. Second, FCMs have potential applications in
intelligent tutoring systems. The reader should note that most of these applica-
tions are in the early stages of development and field testing. The discussions
that follow represent potential, unproved applications.

A. FCMs in an Organizational Context

Most of the authors’ current work is focused on developing an organiza-
tional implementation of fuzzy cognitive mapping. The power of FCMs to reveal
hidden patterns in complex conceptual maps can be exploited to promote
institutional learning. Arie De Geuss, former planner for Shell Oil, defines
institutional learning as changing shared mental models.26 Developing shared
representations of current and future mental models is a complex task. Strategic
decision making environments are complex, unstructured, and not readily quan-
tifiable.27 Cognitive maps have been used as a decision making tool in interna-
tional relations, administrative science, management science, and operations
research.10

FCMs can be used to make the mental maps of management teams, and
others, visible. When the implicitly held assumptions of the participants are laid
bare, the process of exploring and changing mental models may be facilitated.
Long-term change comes from building the models and participating in the
process. Planning and decision making can also be facilitated as the models are
tuned and adjusted over time. FCMs may not be the ‘‘magic bullet’’ for
organizational learning, but the technique definitely shows promise as a tool for
investigating organizational paradigms and promoting organizational learning.

The next section outlines a process recently field tested for group genera-
tion of FCMs. It was used to investigate faculty perceptions of the factors that
affect the use of distance education at a medium-sized university. The workshop
took place over 2 days and required roughly 8.5 h. At the end of the 2 days,
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individual FCMs were generated and a group consensus FCM was developed
and analyzed to reveal factors which the faculty identified as important in the
implementation of distance education.

VI. DRAFT PROCESS FOR THE DEVELOPMENT
OF GROUPS FCMs

( )A. Introduction 30 min

The session begins with a brief introduction to the methodology. The
facilitator explains what we hope to achieve, the basic steps, and the rationale
for this method.

What we hope to achië e: We hope this process achieves several results:

Ž .1 An FCM of participant’s thoughts about the use of distance education at this
university.

Ž .2 Participants will begin to articulate their concerns about distance education in
an open forum.

Ž .3 Open lines of communication among faculty about the process.

Rationale: We have chosen to use this process because we believe it will
least bias participant responses. By allowing the participants to develop their
own model of distance education usage at this university, we, the researchers,
avoid biasing them with a preconceived model. Certainly, there are other ways
we could achieve this without the FCM approach. The advantage of the FCM
approach is that it allows us to explore the model generated and investigate
hidden properties.

At this point, the goal is to address concerns and promote buy-in to the
method, not to the use of distance education. The facilitator should be sure to
communicate that the purpose is to gather honest information and belief

Žstatements. After a suitable period for questions and answers thus the 30 min
.time frame , the facilitator should outline the basic ground rules for a brain-

storming session. Remind participants that no kicking, scratching, or biting is
allowed.

Ž .The goal of brainstorming is the free flow of ideas, thus: a say whatever
Ž .comes to mind, no matter how silly it may seem at the time; b do not edit

yourself or others. Voice your thoughts, we can edit and critique later; and
Ž .c try to let all participants voice ideas.

( )B. Brainstorming 45 min

The brainstorming session is rather straightforward. The facilitator should
encourage participation from everyone, and prevent editing or censoring. If the

Ž .brainstorming energy seems to lag, the facilitator can either: a offer a general
Ž .area of interest for participants to explore; b let the silence reign for a few

Ž .moments; or c end the session if it appears the participants have put up
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everything they want to. Participant reactions]ideas are recorded on large
sheets displayed around the room.

( )C. Individual Clustering 15 min

After the brainstorming session, the participants should be given a short
break while idea cards are generated. The idea cards could have all of the ideas
on them, or random subsets of the ideas. After the idea cards are ready, the
participants should gather to be given the cards and a sheet of tacky paper. The
facilitator should instruct them to create some preliminary clusters of ideas that
seem alike. The facilitator should remind participants that the idea clusters are
to represent ideas that are conceptually similar, not ideas that affect each other. A
sign to this effect should be displayed at this time. The participants should be
warned that they have only 15 min to complete this clustering and that they
should not expect to finish in that time. This exercise is meant to give the
participants a sense of the scope of the ideas as well as a chance to begin
organizing ideas in their own minds. The final clusters will be generated by the
group.

( )D. Group Clustering 90 min

Once the individual clusters are loosely fashioned, the large group should
be reconvened. The facilitator should then explain that the group must come up
with clusters of the ideas, preferably no more than 10. Again, remind the
participants that they are looking for ideas that are conceptually similar, not
ideas that impact each other.

The facilitator should begin by asking the group for some suggestions for
starting clusters; ones developed individually. Each suggestion should be gener-
ally agreed to by the whole group. The facilitator will write each agreed upon
cluster name on a large post-it sheet. Once most of the clusters have been
agreed upon by the group, the facilitator should break the participants into

Ž .groups of four or five and have them place labels with the brainstormed ideas
under the appropriate cluster. Each group is given one set of labels. Each label
must be placed in a cluster based on a consensus.

After the groups have finished clustering, the facilitator will look for items
of agreement and disagreement among the groups. When there is any disagree-
ment among groups about the placement of a brainstormed idea, each group

Ž .will give a rationale for placing the idea s in question within a particular cluster.
Conversation should continue until consensus is reached on all ideas by all
groups. This activity helps participants define each cluster, thus ensuring that all
are speaking ‘‘the same language.’’

The facilitator should take care to ensure maximum participation from
the whole group. Participants who are reticent should be given explicit oppor-
tunities to speak. After the participants have finished the group clustering,

Žallow participants to take a short break. These breaks not only give the
research]facilitation team an opportunity to process the most recent results, but
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also serve to encourage increased communication and clarification of ideas
.among participants. After the break, each participant receives a map of the

clusters generated by the large group. Participants are asked to take these home
and think about how these clusters might be causally linked and to begin to
place modifiers with a q or y directional link between clusters. They should be
instructed to use the list of fuzzy modifiers supplied with the cluster maps that
were generated prior to the workshop. A more advanced option would allow
them to generate their own fuzzy modifiers.

VII. DAY 2

( )A. Second Thoughts 20 min

The activities for the second day begin as the facilitator asks for second
thoughts about the clusters that were generated the day before. Any suggestions
for change should be discussed by the group and agreed upon by the group. It is
not unusual for changes to occur after a period of individual reflection. The
facilitator should also ask participants about their success in transitioning the
group map into a causality map.

( )B. Causality Mapping 90 min

The next task is to generate an initial causality map for the whole group. A
large map of the clusters should be created before the second thoughts activity.
Encourage volunteers to discuss their own maps as starting points for the group.
The large map should then be edited by the group until consensus is reached.
The revised model should then be copied and distributed to the group.

Data gathering might end here. By this point of the pilot project, we had
Ž .generated a fairly complex FCM of the faculty concerns see Fig. 8 which

allowed us to answer our research question. However, other goals outlined at
the beginning of this method were left unfulfilled; specifically, opening lines of
communication. To facilitate open communication and to give the faculty some
sense of closure, the next two steps were important. The next steps also allow
the researchers to expand the understanding of the potential impact of the
model within the larger system. The time necessary for these steps is indetermi-
nate. If successful, the communication channels will remain open beyond the
close of the workshop.

C. Implications

The researchers should have begun this second day with a rough matrix of
Žthe initial group cluster map in some computer-based format e.g., spreadsheet,

. Žcustom software . As the map progresses through variations transitioning to a
.causality map , the researchers are quietly updating the computer-based matrix.

When there is consensus around the final causality map, some initial system
values are entered into the matrix and allowed to reverberate until a limit cycle
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Figure 8. Group FCM of the use of distance education.

is reached. Participants have an opportunity to view the resulting model, discuss
the impact, suggest alternative impacts, and generate other graphic scenarios for
critique. Thus, participants are allowed to explore the hidden features of the
model that they have collectively created.

Perhaps more valuable, though, is the participants’ discussion of the rami-
fication of the model. Questions to consider include:

Ž . Ž1 Which factors]ideas seem to be most important e.g., have the most links, the
.strongest links ?

Ž .2 Which factors]ideas can be controlled by individuals within the group, the
institution, or by others outside the institution?

Ž .3 What could be done to influence the factors]ideas that are under some control
of the individual?

D. Next Steps

Allow participants to discuss the course of best action. This discussion
should correlate highly with the models and reflections generated with the
computer-based matrix manipulations.
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1. Results of the Field Test

The workshop was held over a day and a half period late in the fall
semester. The researchers invited 20 faculty and administrators to participate.
The invitees represented a cross section of College of Education faculty, from
novice teachers to more experienced. There are much discussion about the
composition of the participant group, their experience, knowledge about dis-
tance education, and whether the sample should be random or representative.
When the researchers realized that the primary goals of the process were

Ž .qualitative rather than quantitative e.g., fostering open communication , a
representative sample was deemed more appropriate. Invitations were then
extended, requesting voluntary participation. To support this effort, the Dean of
the college also sent a letter endorsing the project and asking faculty to
participate. Unfortunately, the workshop was scheduled during final exam week
which created scheduling conflicts for many of the invited faculty.

On the first day of the workshop, four faculty participants arrived at a
selected off-campus site to begin the process. Participants were faculty from
four distinct departments and had very little background knowledge about
distance education. These researchers facilitated the process and led the group
through the process as previously described.

Over the course of the day and a half workshop, the participants generated
Ž .a 12-node, interconnected FCM see Fig. 8 of the factors they felt influenced

the use of distance education technologies at the University. The brainstorming
Ž .efforts took longer than anticipated even with the small number of participants

due to the sheer number of items generated by participants. On the second day,
reaching consensus on the weights and edges took much longer than scheduled.
This part of the process had not been tested previously and will need to be
adapted for future workshops. The discussions generated as part of the consen-
sus building were valuable to the general understanding of the participants, but
the amount of time required precluded engaging in the final steps of discussing
and exploring the final group map.

During the field test, many possibilities for improving the process became
apparent. Creating connections between the nodes took far too long, as did the
consensus building. Other weaknesses were revealed in the balance between
individual and group processes. We attempted to do too much in this first trial.

Analysis of the final group map yields some interesting observations. The
most influential node on the use of distance education at the University, both in
terms of weight and number of connections, was the node that represented
levels of faculty comfort with the technology. The second most influential node
was level of institutional support. These results can be interpreted as supporting
existing theories about the adoption and diffusion of new technology. Faculty
participants had a deep sense of the importance of the comfort node with
relatively low concern for the hardware systems themselves.

An alternative interpretation is that the final group map reflects the general
stage of adoption within the organization. The nodes that indicate that the
faculty are most concerned with support from the institution and their own level
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of comfort indicate the organization is in a very early adoption phase; one
characterized by potential adopters that are somewhat aware of the technology,
but unsure about the potential impact on their professional lives.

A third potential interpretation is that faculty are naturally concerned with
their own issues and would naturally make those most important to their use of
the technology. They would naturally not be as concerned with issues that might

Ž .be important to other populations e.g., technical support staff, administration .
All participants reported that participation in the workshop had increased

their awareness and understanding of the complexities of distance education at
the University. They also praised the process for accommodating individual
perspectives and allowing for nonadversarial problem solving on a potentially
emotional topic.

2. Applications in Intelligent Tutoring

The promise of intelligent tutoring systems to create individualized instruc-
tional environments has spurred the creation of a plethora of demonstrations,
research tools and prototypes.28,29 Most systems to date have centered on hard
knowledge domains; domains where the information is easily coded into the
system. Anderson’s LISP tutor 50 is a frequently cited example of an intelligent
system. The advantage of creating systems in hard knowledge domains is the
relative ease of creating an expert model and modeling the student representa-
tion. Typically the model takes the form of production rules30 ; a series of
IF]THEN rules which encode the experts knowledge within the domain.

Typically, developing the expert cognitive model is the most time intensive
task of developing an intelligent tutoring system. The task is analogous to
developing an expert system.30 FCMs present an alternative to rule-based expert
systems.19 Having an expert draw diagrams of their knowledge, rather than
listing rules, is cognitively efficient and all maps share a common structure;
facilitating knowledge combination between experts.24 FCMs can also represent
soft knowledge domains with the use of fuzzy concepts. Fuzziness allows the
representation of hazy degrees of causality between hazy causal objects.2

The other expert system in an intelligent tutoring system is a system for
modeling the learner’s understanding. The intelligence of a system resides in its
ability to create an accurate model of student understanding and ‘‘the ability to
analyze learners’ solution histories dynamically, using principles rather than
preprogrammed responses to decide what to do next’’.31 Again, this is commonly
achieved with rule-based expert systems. Typically these rules are heuristics that
apply generally over limited domains or probabilistic models of student achieve-
ment.32 FCMs can represent a dynamic model of the student and student
knowledge. In an analogous task, Lee, Kim, and Sakawa33 developed a method
of using FCMs for on-line fault diagnosis in a chemical processing plant. Using
the temporal, dynamic aspects of FCMs, they generate a fault vector that is then
matched against an appropriate FCM. The FCM can predict incipient faults and
diagnose the cause of the fault vector. The authors found that FCMs were
better tools than heuristic, branching models for representing the dynamic
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feedback loops in a complex chemical processing environment. While Lee, Kim,
and Sakawa33 made some critical assumptions in their work which are only
applicable to a chemical plant, the general framework serves as a starting point
for developing similar systems for cognitive diagnosis in an intelligent tutoring
system.

The most advanced expert models are useless, however, without an instruc-
tional environment in which to embed them. Sugrue and Clark34 discuss six
categories of instructional methods that a fully supportive learning environment
would need to support:

Ž .1 Elaborate on the goal of the task and its’ demands.
Ž .2 Provide information related to the task.
Ž .3 Provide practice tasks and contexts.
Ž .4 Monitor trainee performance.
Ž .5 Diagnose sources of error in performance.
Ž .6 Adapt goal elaboration, information and practice tasks.

There are a number of potential applications of FCMs in a system that
supports these instructional methods. The expert model might be used for
diagnosis and monitoring in conjunction with the diagnostic models. FCMs can
store rules for adapting the system to the learner and provide information
related to the given practice tasks. Additional applications of FCMs include:

Ž .1 Elaborate on the goal of the task}When FCMs are used to generate curricula,
the goal driving the task becomes evident. A common complaint of students is
that tasks frequently do not appear to be relevant or useful. FCMs can help
students understand how seemingly disparate tasks fit within a larger structure.
Eventually, understanding the dynamics of the FCM itself, as a model of a real
system, may become the goal.

Ž .2 Pro¨ide information related to the task}FCMs embed a large amount of infor-
mation about a given domain. FCMs make evident what is and is not important
within the context, reveal the categories which experts use to think about the
system, and structure the domain in a graphical representation.

Ž .3 Organizing and navigating complex information spaces has proven notoriously
difficult.35 FCMs may prove to be useful in organizing hypermedia environ-
ments. A simple system might use the FCM directly as a map of the information
space, providing semantic links between conceptual nodes. A more advanced
system might use a separate FCM to structure and organize the information
adaptively. There is much room for research in this area.

Ž . 344 Monitor trainee performance}Sugrue and Clark identify two methods for
Ž .monitoring the external training environment: a data collection on aspects of
Ž .trainees’ performance and perceptions, and b guidance and tools to help

trainees do their own monitoring or monitoring one another’s performance.

The most obvious use of FCMs in this context is as a tool to enable students
to monitor their own performance. Depending on the amount and timing of the
monitoring required by the trainee, FCMs can be a just-in-time support, a
central focus of support for practice. Utilizing appropriate group and individual
processes, training systems can take advantage of the ease of generation and the
feedback properties of FCMs to help trainees monitor the implications of their
own models.
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FCMs could also facilitate data collection for machine monitoring of
student performance. Wallace and Mintzes36 report that traditional concept
mapping techniques are very sensitive to changes in students’ conceptual frame-
works. Further research will demonstrate whether this holds for FCMs as well.
The FCM framework, however, gives developers the power to begin to compare
student FCMs with expert FCMs. Two simple comparisons are measuring the
centrality of a given node, and the effect, both direct and indirect, one node has
on another. Kosko19 has developed several methods for categorizing the impor-
tance and centrality of nodes within an FCM. A most simple measure is to sum
the weights of the edges coming into and leading out of a given node.

Ž . Ž . Ž . Ž .Concept centrality: CEN C s IN C q OUT C where IN C s +ei i i i k i
Ž . Ž .where e represents the causal edge function from k to i , OUT C s +ek i i ik
Ž .where e represents the causal edge function from i to k .i k

Nodes with high centrality and importance could be marked for special
attention in data gathering or support of practice. The effect of one node on
another can be measured with the following equations:

Indirect effect between concept i and concept j:

I C , C s min e C , C : p , p q 1 E i , k1, . . . , kn1, jŽ . Ž .Ž . Ž .i j p pq1

Ž .where e: the edge function, i, k1, . . . , kn1, j : the set of i through j edge
functions, p, p q 1: contiguous left-to-right path indices, total effect of concept i

Ž . Ž .on concept j: T C , C s max I C , C .i j i i j
The validity and usefulness of these measures has yet to be demonstrated,

and more sophisticated techniques are sure to be developed.

VIII. CONCLUSION

This paper has discussed the potential usefulness of fuzzy cognitive map-
ping in educational organization settings. The development of graphical tools to
facilitate conceptual change is an important endeavor for educational technolo-
gists and facilitators of systemic change. By combining the capability of fuzzy
logic to represent soft knowledge domains with dynamic modeling capabilities,
the FCM framework has tremendous potential for contribution to the develop-
ment of useful cognitive tools. FCMs are an extension of earlier concept
mapping paradigms, yet they represent a significant advance over earlier, biva-
lent, static mapping systems.

There is much research to be done on the application of FCMs to
education and instructional technology. It is heartening to know that there are a
growing number of traditional engineering disciplines that are using FCMs to
capture and represent expert knowledge resulting in the use of that knowledge
in productive and meaningful ways. This paper will hopefully stimulate educa-
tional researchers to recognize the unique applicability of fuzzy logic to our
field. As our understanding of the complexity of human learning increases, we
must embrace new ways of describing, facilitating, and supporting that learning.
Fuzzy cognitive maps represent one step in that direction.
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