Testate amoebae as palaeohydrological indicators in peatland archives the Polish experience #### **Mariusz Lamentowicz** Department of Biogeography and Palaeoecology Adam Mickiewicz University Poznań POLAND #### **Edward A.D. Mitchell** Ecole Polytechnique Fédérale de Lausanne (EPFL) Swiss Federal Research Institute WSL SWITZERLAND #### Presentation Outline - Introduction (aims of the study, testate amoeba morphology and habitat) - Study area - Research methods - Results (Ecology & Palaeoecology) - Summary & Conclusions #### Aims of the study - Ecological studies of testate amoebae, - Development of testate amoeba based transfer functions (water table, pH), - Use of testate amoeba based transfer function in palaeoecological and paleoclimatological studies - Using testate amoeba analysis as a tool for the monitoring of peatlands #### Structure Physochila (Nebela) griseola (Penard 1911) The test (shell) protects the cytoplasm Pseudopodia emerge through the aperturebut this specimen is encysted How are they incorporated into the peat? Research Area #### Methods Stages of the research on testate amoebae #### Stage 1. Ecological investigations Field work: Surface sampling #### Stage 2. Palaeoecological investigations Field work: Coring - using a Russian and/or a Wardenaar sampler #### Stage 3. Laboratory - Monolith/cores subsampling - Surface samples preparation - Preparation of fossil samples - Microscopic examination slides counting #### Stage 4. Numerical analysis Where Ecology meets Palaeoecology! #### SURFACE SAMPLNG - two #### contrasted microhabitats for testate Hummock with Sphagnum fuscum JEL Hollow with Sphagnum cuspidatum and S. recurrent IFI 90 recurvum JEL 20 Low water table High water table #### PEAT SAMPLING in the field... ...and subsampling in the laboratory ## Ecology of testate amoebae ### Environmental variables #### Biplot of Redundancy Analysis **RDA** (samples) #### Biplot of Redundancy Analysis RDA (species) ## Palaeoecological application of testate amoebae Proxies Reconstruction Human impact #### Example I – Mukrza kettle – hole bog Community changes following the Wda River damming #### Example II - Jelenia Wyspa Mire Response of the mire to forest clearance #### Summary 1/2 - We provided new data on the ecology of testate amoebae in Poland, - This data was used to produce a **local transfer function** (DWT & pH), filling a gap in central Europe, - Testate amoebae were used, for quantitative reconstruction of water table and pH changes in Polish kettle-hole mires, - ... together with other proxies (pollen, macrofossils) - multiproxy approach. #### Summary 2/2 - The results show that palaeomoisture data inferred from testate amoebae can be correlated with other signals in studies on Mukrza, Jelenia Wyspa and Tuchola peatlands. - In Jelenia Wyspa *Sphagnum* mire, **deforestation** (pollen analysis) caused an **rise** in the **water table** (testate amoebae analysis). - In Mukrza, testate amoebae and desmids responded to **water-logging** following the **damming** of the Wda River. - Further work is ongoing on kettle—hole mires and raised bogs from Pomerania and Central Poland. #### Conclusions - Polish data are exceptionally important because Poland is under **several contrasted climatic** influences from oceanic to continental, - In view of the ongoing and future change in climate, we need more **high-resolution palaeoclimatological studies** in order to gain a better understanding of the response of natural ecosystems to past climatic changes, - Testate amoebae are very valuable indicators to study the relationships among peatlands, climate, and human activities. # Thank you for your attention