

Assessment of environmental flows in the Narew River system

M. Piniewski, T. Okruszko, WULS

IA2 meeting, Tallinn, 12-14.04.2010

Outline

- Context
- Environmental flows estimations
- BBM for the Narew River
- Way forward
- SWAT for the Narew River (optionally)
- Final picture

Objectives & motivation

- Objectives:
 - assessment of environmental flows in the major stretches of the Narew River system using the adapted Building Block Method
 - impact assessment of SCENES scenarios on environmental flows
 - cross-scale comparison with the Pan-European "Water for Nature" indicators
- Motivation:
 - term "environmental flows" hardly unknown in Poland, current instream flow requirements don't take into account real ecosystems demands
 - most of environmental flows studies on heavily impacted rivers
 - WFD context

Overview of methods

Group of methods	Examples	Duration of assessment (months)	Major advantages	Major disadvantages
Hydrological index	Tennant method, Q ₉₅ index method	1⁄2	Low cost, rapid to use	Not site-specific, ecological links assumed
Hydraulic rating	Wetted perimeter method	2-4	Low cost, site-specific	Ecological links assumed
Habitat simulation	IFIM, PHABSIM	6-18	Ecological links included	Extensive data collection and use of experts, high cost
Holistic	Building Block Method (BBM)	12-36	Covers most aspects	Requires very large scientific expertise, very high cost, not operational

Tharme (2003), Dyson et al. (2003), King, Brown & Sabet (2003), Acreman & Dunbar (2004)

Adaptation of the BBM for Narew

- No discussion panels as in original BBM, but engaging experts from different fields: fish ecologist, wetland ecologists, ecohydrologists, hydrologists
- Assumption: healthy fish population and wetland vegetation reflects a wider ecological health, therefore only these 2 ecosystem components were considered
- Building blocks formed of 3 components:
 - Fish => 1st building block (optimum flow values for different fish life history stages)
 - Wetlands => 2nd building block (bankfull flow & duration of inundation)
 - Additionally: *instream flows* in force according to the Polish law (simple look-up table method known as *Kostrzewa method*) => 3rd building block

River type	Drainage basin area km ²	k
Lowland	< 1000 1000 - 2500 > 2500	1.00 0.58 0.50
Mixed / Highland	< 500 500 - 1500 1500 - 2500 > 2500	1.27 0.77 0.52 0.50

 $Q_{\textit{Kos}} = \max \; \{ k {\cdot} Q_{\textit{min,av,}} \; Q_{\textit{min,abs}} \}$

 $Q_{min,av}$ – average annual minimum flow k – empirical coefficient $Q_{min,abs}$ - absolute minimum flow

Environmental flows for fish – undertaken approach

- A number of gauged sites (16) representing hydrological and ecological diversity of the Narew River system selected
- A thorough literature review made by the fish ecologist to assess the probable fish fauna composition in each site
- Key species for each site selected (most frequently: pike, wels & rheophiles)
- 3 major fish life history stages taken into account: spawning, wintering and feeding
- Valley and channel cross-sections & water stage records used to determine optimum water stages for each site and period
- Water stages transformed into flows (ongoing)

Location of gauged sites selected for the study

Example – Suraż on the Narew

Environmental flows for wetland vegetation – undertaken approach

- Analysis of hydrogenic habitats in major valleys of the Narew river system
 - Spatial analysis of hydrogenic habitats
 - Analysis of spatial diversity of vegetation growing on hydrogenic habitats
 - Identification of areas requiring inundations in order to support habitats of high natural value
- The final selection of areas requiring inundations was based on dominating wetland vegetation type:
 - Rushes => Long-term inundation (up to 1 year)
 - Sedges => Medium-term inundation (2-4 months)
 - Molinia meadows, shrubs, alder forests => Short-term inundation (0-2 months)
 - Fresh meadows => No inundation

Valley stretches requiring inundation to support habitats of high natural value

Example – Burzyn on the Biebrza

Inundation requirements for wetland vegetation determined by the ecologists: medium-term (2-4 months)

Remaining steps

- Setting measures of compliance of flow series with a determined environmental flows regime (indicators)
- Assessment of actual state based on analysis of flow series for 2001-08
- Environmental flows under SCENES scenarios study based on 30-year runs of SWAT model
- Cross-scale comparison of SWAT & WG results on environmental flows indicators

SWAT model - basic features

- Soil & Water Assessment Tool is a river basin model consisiting of hydrologic and water quality components
- Distributed, physically-based, continuous time model coupled with GIS
- River basin divided into subbasins which are then divided into Hydrologic Response Units (HRUs)
- Its main purpose is to quantify the impact of land management practices in large, complex river basins

Climate and streamflow gages location

Model evaluation

Nash-Sutcliffe Efficiency (daily) = 0.82 Average observed flow = 114 m³/s Average simulated flow = 111 m³/s Root Mean Squared Error = 29 m³/s

Model setup - summary

- 151 subbasins => av. subbasin area = 180 km²
- 8 land use classes
- 27 soil classes
- 1131 HRUs => av. area = 24 km²
- Climate:
 - 12 rain gauges
 - 6 climate (temperature + wind speed + humidity) stations
 - 1 solar radiation station
- Warm-up 1998-2000; simulation period 2001-2006, validation period 2007-2008
- Daily time step
- Manual calibration + SWAT Autocalibration Tools applied

