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Abstract

Many types of ecological or environmental problems would benefit from models based on people’s knowledge. To create
ecological models with both expert and local people’s knowledge, a multi-step fuzzy cognitive mapping approach is proposed.
A cognitive map can be made of almost any system or problem. Cognitive maps are qualitative models of a system, consisting
of variables and the causal relationships between those variables. We describe how our cognitive mapping research has been
used in real environmental management applications. This research includes examining the perceptions of different stakeholders
in an environmental conflict, obtaining the perceptions of different stakeholders to facilitate the development of participatory
environmental management plans, and determining the wants and desires for resettlement of people displaced by a large scale
dam project. Based on our research, which involved six separate studies, we have found that interviewees complete their cognitive
maps in 40–90 min on average. These maps contain an average of 23± 2 S.D. variables with 37± 3 S.D. connections. People
generally put more forcing functions into their maps than utility variables. Fuzzy cognitive mapping offers many advantages for
ecological modeling including the ability to include abstract and aggregate variables in models, the ability to model relationships
which are not known with certainty, the ability to model complex relationships which are full of feedback loops, and the ease
and speed of obtaining and combining different knowledge sources and of running different policy options.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Modeling ecological or environmental problems is
a challenge when humans are involved. We identified
four types of problems where gaining insights or pre-
dicting system behavior can be very difficult. The first
type involves human behavior and how human actions
can affect an ecosystem. Examples include manage-
ment of sport or commercial fisheries, where anglers
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and fishing effort can have a considerable effect on
the ecosystem. The behavior of commercial fisherman
and anglers needs to be accounted for in these models
because knowledge of fishing effort in response to reg-
ulations is needed to choose appropriate management
options (Dreyfus-Leon and Kleiber, 2001; Radomski
and Goeman, 1996). In such cases a modeling tool to
determine perceptions of fishermen concerning a fish-
ery and their probable actions given different manage-
ment scenarios would be useful.

The second type of problem involves instances
where detailed scientific data are lacking but local
knowledge of people adapted to an ecosystem is

0304-3800/$ – see front matter © 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.ecolmodel.2003.10.027



44 U. Özesmi, S.L. Özesmi / Ecological Modelling 176 (2004) 43–64

available. Much could be learned from incorporat-
ing this local or indigenous knowledge but typically
models have no means to do this.

The third type is “wicked” environmental problems
(Mason and Mitroff, 1981). These problems are com-
plex, involve many parties, and have no easy solutions
or right answers. However, decisions must be made.
A useful modeling tool for analyzing such problems
would bring together the knowledge of many differ-
ent experts from different disciplines, be able to com-
pare their perceptions and to simulate different policy
options, allowing for discussion and insight into the
advantages and disadvantages of possible decisions.

Finally the fourth type of problem concerns ecosys-
tem management where public involvement is desired
or even mandated by law. Most ecosystem models
typically address things such as primary production
while the public is concerned with properties such as
human health or costs of different management op-
tions (Hobbs et al., 2002). In these cases the modeling
method should be able to incorporate public opinions
about these higher-level variables of concern to the
public. In addition, the model could be used to inform
the public regarding different management options,
and enable public support for management decisions.

All of these types of problems would benefit
from models based on people’s knowledge. Cogni-
tive mapping provides a means to do this.Özesmi
(1999a)developed a multi-step fuzzy cognitive map-
ping approach for analyzing how people perceive an
ecosystem, and for comparing and contrasting the
perceptions of different people or groups of stake-
holders. The multi-step approach is a synthesis of
relevant useful techniques from many disparate dis-
ciplines on cognitive mapping. This article describes
this multi-step approach in detail, providing a method-
ological tutorial and some examples from our own
research. In addition, to our knowledge this article is
the first review of cognitive mapping for ecological
modeling and environmental management. First we
give a brief introduction to cognitive mapping includ-
ing its history and some examples of its uses. We
compare FCM to some other techniques and discuss
the advantages and disadvantages of cognitive map-
ping. Based on our research and examples from the
literature we propose that some generalities about the
structure of cognitive maps can be made. As this ar-
ticle is a synthesis of a large body of knowledge from

different fields on cognitive mapping, there are many
new technical terms. For the reader’s convenience,
the first time a new term is used, it is explained and
a reference to the relevant literature is given.

1.1. Introduction to cognitive mapping

What is a cognitive map? A cognitive map can be
described as a qualitative model of how a given sys-
tem operates. The map is based on defined variables
and the causal relationships between these variables.
These variables can be physical quantities that can be
measured, such as amount of precipitation or percent
vegetation cover, or complex aggregate and abstract
ideas, such as political forces or aesthetics. The per-
son making the cognitive map decides what the im-
portant variables are which affect a system and then
draws causal relationships among these variables in-
dicating the relative strength of the relationships with
a number between−1 and 1. The directions of the
causal relationships are indicated with arrowheads.
Cognitive maps are especially applicable and useful
tools for modeling complex relationships among vari-
ables. With cognitive mapping the decision-makers’
maps can be examined, compared as to their similari-
ties and differences, and discussed. In addition the ef-
fects of different policy options can easily be modeled.
Maps can also be made with local people, who often
have quite a detailed understanding of the ecosystem
(Özesmi, 1999a,b). Their input can be important for
decision-making and for the public to accept the cho-
sen solutions.

1.2. History of cognitive mapping

Cognitive maps are directed graphs, or digraphs,
and thus they have their historical origins in graph
theory, which started with Euler in 1736 (Biggs et al.,
1976). In digraphs each link (line or connection)
between variables (points or nodes) has a direction
(Harary et al., 1965). Anthropologists have used
signed digraphs to represent different social structures
in human society (Hage and Harary, 1983). In ecol-
ogy, Puccia (1983)used a signed digraph model for
studying the relationships among benthic organisms.
Axelrod (1976)was the first to use digraphs to show
causal relationships among variables as defined and
described by people, rather than by the researcher.
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He called these digraphs cognitive maps (term first
used byTolman, 1948). Many studies have used cog-
nitive mapping to look at decision-making as well as
to examine people’s perceptions of complex social
systems (Axelrod, 1976; Bauer, 1975; Bougon et al.,
1977; Brown, 1992; Carley and Palmquist, 1992;
Cossette and Audet, 1992; Hart, 1977; Klein and
Cooper, 1982; Malone, 1975; Montazemi and Conrath,
1986; Nakamura et al., 1982; Rappaport, 1979;
Roberts, 1973).

Kosko (1986)modified Axelrod’s cognitive maps,
which were binary, by applying fuzzy causal functions
with real numbers in [−1, 1] to the connections, thus
the term fuzzy cognitive map (FCM). Kosko was also
the first to compute the outcome of a FCM, or the FCM
inference, as well as to model the effect of different
policy options using a neural network computational
method (Kosko, 1987).

FCM has been used to model a variety of things
in different fields: the physiology of appetite (Taber
and Siegel, 1987), political developments (Taber,
1991), electrical circuits (Styblinski and Meyer,
1988), a virtual world of dolphins, shark, and fish
(Dickerson and Kosko, 1994), organizational behav-
ior and job satisfaction (Craiger et al., 1996), and
economic/demographics of world nations (Schneider
et al., 1998). Recent applications have included using
expert knowledge to create FCMs that are combined
with data mining of the world wide web (Hong and
Han, 2002; Lee et al., 2002).

In ecology, the use of FCMs has been limited.
Radomski and Goeman (1996)used FCM to suggest
ways to improve decision-making in sport-fisheries
management by sending questionnaires to experts ask-
ing them the important variables and the relationships
between these variables. Although they emphasized
the importance of knowledge concerning angler be-
havior when making management decisions, they did
not incorporate the opinions of anglers in their model.
Hobbs et al. (2002)used FCM to define management
objectives for the Lake Erie ecosystem. Their FCM
modeling process involved the participation of many
experts and some members of the public, allowing
for discussion and insight into the potential effects
of different management actions.Özesmi (1999a,b)
first used FCM to analyze the perceptions about an
ecosystem held by people in different stakeholder
groups.Özesmi and Özesmi (2003)used FCM to an-

alyze the perceptions of different stakeholder groups
about a lake ecosystem in order to create a participa-
tory management plan.Dadaser and Özesmi (2001,
2002)used FCM to obtain the perceptions of differ-
ent stakeholder groups in two wetland ecosystems
in central Turkey. Recently applications of cognitive
mapping have appeared in forest management.Skov
and Svenning (2003)combined FCM with a GIS to
use expert knowledge to predict plant habitat suit-
ability in a forest.Hjortsø (2004)discussed the use
of a cognitive mapping approach called strategic op-
tion development and analysis (SODA) to increase
stakeholder participation in forest management in
Denmark.Mendoza and Prabhu (2003)used cogni-
tive mapping to examine the linkages and interactions
between indicators obtained from a multi-criteria
approach to sustainable forest management.

1.3. Comparison to other methods

In this section we compare FCMs to other meth-
ods in ecological modeling and environmental man-
agement.

The use of expert systems is increasing in ecological
modeling (i.e.Yamada et al., 2003). Expert systems
require the construction of a knowledge base which
is taken from the experts’ experience. Compared to
most of these methods, FCMs are relatively quicker
and easier to acquire from the knowledge sources, who
do not usually think in equations. With FCMs you
can have as many knowledge sources as wanted with
diverse knowledge and different degrees of expertise.
These knowledge sources can all be easily combined
into one FCM. There is no restriction on the number
of experts or on the number of concepts.

Structural equation modeling (SEM) (also known
as causal modeling, covariance structural modeling,
LISREL and others) is based on the statistical model
developed byJöreskog (1977). Causal relationships
among the variables in the models are specified and
tested with parameter estimation procedures, usually
maximum likelihood. Structural equation modeling
techniques are typically used to confirm or disprove
an a priori hypothesized model. However, they can
also be used as an exploratory modeling tool. Cur-
rently ecological applications of SEM are increasing
(Iriondo et al., 2003; Shipley, 2000). Craiger et al.
(1996) compared SEM with FCM. The limitations
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of SEM include nonconvergence of solutions and
the inability to estimate parameters if the model and
data are insufficient (under identification). In contrast
FCMs are not concerned with parameter estimation
but instead give qualitative information. Because of
this FCMs facilitate pattern prediction, or changes in
the behavior of the model. The person making the
map decides on the strengths, these strengths can be
changed easily and more simulations done to learn
how the model changes with changing strengths of
relationships. SEM often has the problem of model
underidentification, especially with complex systems.
In addition feedback loops must be removed from the
model. However, FCMs can have unlimited complex-
ity, including an unlimited number of concepts and
reciprocal causal (feedback) relationships.

Multiattribute decision theory has been widely used
in ranking a finite number of alternatives characterized
by multiple, conflicting criteria or attributes (i.e.Luria
and Aspinall, 2003). It allows for the measurement and
aggregation of the performance of one or more op-
tions with respect to a variety of both qualitative and
quantitative factors (criteria) into a single value. With
multiattribute decision theory the alternatives need to
be chosen and the factors and their weights. In con-
trast, with FCM the technique can be used to suggest
the alternatives based on stakeholder input where each
person making an FCM thinks of what is important
and what should be included. In addition, FCM allows
feedback loops.

Systems dynamics models use differential or dif-
ference equations to describe a system’s response to
external factors (i.e.Håkanson and Boulion, 2003).
They are used to model long term dynamic behavior
of ecosystems. In contrast FCMs are not dynamic
models. Systems dynamics models require a lot of
empirical data about the ecosystem. FCMs are more
appropriate for data poor situations. AlthoughStave
(2003) used a systems dynamics model to engage
stakeholder interest and build stakeholder under-
standing of the system and the basis for management
decisions concerning water supply in Las Vegas, NV,
USA, our multi-step FCM method is a participatory
approach where stakeholders themselves are involved
in building the model.

Interestingly studies of Uluabat Lake in Turkey have
been done with both the multi-step FCM approach
(Özesmi and Özesmi, 2003) and a systems dynamics

model (Güneralp and Barlas, 2003). For the systems
dynamics model, the authors admit that some of the
data needed is either unreliable or not available and
results need to be interpreted in that light. Although
many simplifying assumptions are made, the systems
dynamics model also includes social and economic
components in addition to ecological, unlike most sys-
tems dynamics models. Based on the systems dynam-
ics model the effect of different policy options was
simulated. The authors concluded that the model is to
be a laboratory where the effect of different policy op-
tions can be simulated and suggested ways in which
the model could be improved. The systems dynamics
model predicted that the lake ecosystem would not go
to a turbid water state with few macrophytes. How-
ever, as of 2003, macrophytes have declined, espe-
cially submerged macrophytes. Although algae is not
abundant, the water is turbid from suspended solids.
The FCM model predicts that lake pollution continues
to increase. The FCM was based on the perceptions
of many stakeholders concerning the ecosystem. But
the main difference in the modeling approaches is the
purpose of the models. The FCM was used to develop
a participatory management plan with the goals and
objectives based on the stakeholders’ FCMs. Because
the management plan was based on stakeholder input
the stakeholders were able to take ownership of the
plan and are working towards its goals.

Why choose FCM over other modeling methods?
To answer this question, we must consider the issues
of model complexity and the reason for the model.
Obviously it is important to have a model that is com-
plex enough for the problem to be solved; however
data poor situations limit model complexity. Data is
costly and often not available, especially in develop-
ing countries, where conservation efforts and manage-
ment are important but not resolved. The multi-step
FCM approach described herein is not obtained from
empirical data but can be used for modeling percep-
tion and therefore social ideas of how systems work.
This is essential for conserving an ecosystem where
the support of many stakeholders is necessary. It is
also useful for extension activities to educate stake-
holders, if there are any misperceptions.

The main advantage of the multi-step FCM ap-
proach is that it is easy to build and gives qualitative
results. It does not require expert knowledge in ev-
ery field but can be constructed based on simple
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observations by anybody including indigenous or lo-
cal people. It does not make quantitative predictions
but rather shows what will happen to the system in
simulations under given conditions of relationships.
The model provides a better summary of relationships
between variables instead of articulating how that
relationship is in detail.

With FCMs the strengths and signs of relationships
can be easily changed and simulations run easily and
quickly. Thus they are ideal tools for theory devel-
opment, hypothesis formation, and data evaluation.
However, FCMs are not substitutes for statistical tech-
niques; they do not provide real-value parameter esti-
mations or inferential statistical tests.

1.4. Multi-step FCM approach

Our multi-step FCM analysis approach includes the
following steps:

(1) Drawing of cognitive maps.
(2) Determining if the sample size is adequate.
(3) Coding the cognitive maps into adjacency matri-

ces.
(4) Augmenting individual cognitive maps and then

adding them together to form stakeholder social
cognitive maps.

(5) Analyzing the structure of individual and social
cognitive maps using graph theoretical indices.

(6) Analyzing the differences and similarities in vari-
ables among stakeholder groups.

(7) Condensing complex cognitive maps into simpler
maps for comparison purposes.

(8) Analyzing the outcomes of cognitive maps using
neural network computation.

(9) Simulating different policy options through neural
network computation.

This approach is described in detail inSection 2.

2. Methods

2.1. Obtaining cognitive maps

Cognitive maps can be obtained in four ways: (1)
from questionnaires, (2) by extraction from written
texts, (3) by drawing them from data that shows causal
relationships, (4) through interviews with people who

draw them directly. In this article, the first three meth-
ods are described only briefly because they have been
covered in detail elsewhere.

Roberts (1976, pp. 333–342)told how to derive cog-
nitive maps from questionnaires. He suggests using the
opinions of many experts and also “lay” experts who
are knowledgeable or concerned about the problem of
interest but who are not necessarily from a specific
technical discipline. The procedure first involves iden-
tifying variables and then selecting the most important
ones to include in the map. Different approaches can
be used to do these two steps, such as using a pre-
liminary questionnaire or from meeting with experts.
Finally the relationships between the variables are de-
fined by giving the expert ordered pairs of variables in
a questionnaire format. This allows systematic com-
parison of all ordered pairs of variables.

Wrightson (1976, pp. 291–332)described exten-
sively the process of coding cognitive maps from
text. Shortly, this method is a form of content anal-
ysis (Carley, 1990). The coder looks for “cause
concept/linkage/effect concept” relationships. These
relationships are usually explicitly stated but some-
times they may be implicit. The original language is
maintained as much as possible so that the meaning
is not distorted later.

Schneider et al. (1998)detailed how to draw cog-
nitive maps from data. In this method, each variable
that has numerical measurements (data) available is
represented by a numerical vector, where each vector
element represents one measurement. The numerical
vectors are transferred into fuzzy sets and each vec-
tor element is represented by a grade of membership.
Then the relationship between the variables is deter-
mined by examining the data, whether the relationship
is direct or inverse, and also the closeness of the vari-
ables are determined. Finally the correlations among
variables are determined and assuming these corre-
lations represent causative relationships the cognitive
map can be coded.

The technique we have used involves creating cog-
nitive maps through an in-depth interviewing process
using the first two steps of textual analysis for drawing
cognitive maps as described byCarley and Palmquist
(1992). This involves identifying concepts (variables,
factors) and the relationships between those concepts.
Interviews may be done with individuals or groups
of people. First, how to draw a FCM is explained to
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the interviewee(s) using a completely unrelated map,
that is, a map from a neutral problem domain (Taber,
1991). Once the interviewee(s) understand the process
of constructing a cognitive map, and then they are able
to draw their own map of the issue under investiga-
tion. Questions typically are open-ended. For exam-
ple, a question might be stated as “When I mention
this ecosystem (state name here) and its surroundings
and its inhabitants what are the variables/things that
come to your mind? How do these affect each other?”
Depending on the purpose of the research, questions
might also be directed, such as “What are the vari-
ables/things that affect lake eutrophication? How do
these variables affect each other?” After the intervie-
wee is asked to name the most important variables, or
things that come to mind about a given system, prob-
lem, or desired outcome, these variables are listed on
a large piece of paper (we have found 50 cm× 70 cm
to be a practical size). After the interviewee(s) has
made a list of variables, they are asked to explain the
relationships between the variables. The variables are
drawn in the center of the paper and the lines, or edges
or links, are drawn between the variables to repre-
sent these relationships with arrows to indicate their
direction. The lines are given a positive or negative
sign and a “strength” of strong, medium, or low or
as real numbers between−1 and+1. For one study,
every interviewee should use the same scale, either
strong, medium or low or a number between−1 and
+1. At any time in the process more variables (and
their relationships) can be added to the map. The in-
terview is finished when interviewees feel that they
have completed their maps and have nothing more
to add. We recommend constructing your own cogni-
tive map of the system before interviewing other peo-
ple. Then you will be able to introspectively question
your own assumptions and understanding of the sys-
tem. This also allows you to be aware of your own
model and not let your ideas about the system in-
fluence others when conducting the interviews. Cog-
nitive maps can also be created in a group process
where the group together decides on the important
variables and on the causal relationships between those
variables. This allows for discussion of the variables
and the sign and magnitude of the relationships. We
prefer individual drawing of cognitive maps, as then
power relationships among group members do not play
a role.
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Fig. 1. The total number of variables vs. number of maps.

2.2. Sample size

FCMs are created with different people until the
population to be represented has been sampled suffi-
ciently. To determine this, we can examine accumu-
lation curves of the total number of variables versus
number of interviews as well as the number of new
variables added per interview. Average accumulation
curves can be made by using Monte Carlo techniques
to randomly select many times, i.e. 200, the order of
the interviews and determine how the variables ac-
cumulate. The accumulation curves based on Monte
Carlo techniques can be produced with a spreadsheet
or a program such as EstimateS (Colwell, 1997).

Example accumulation curves are shown inFig. 1
for total number of variables versus number of inter-
views and inFig. 2 for the number of new variables
added per interview. As the number of interviews in-
crease the total number of variables levels off. The
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slow accumulation of variables might be due to a lim-
ited vocabulary interviewees have with regards to the
subject of inquiry. For example,Carley and Palmquist
(1992)report that 29 undergraduates mentioned up to
244 concepts on research writing and 45 students pro-
duced 217 concepts on tutor selection. One individual
could only consider between 30 and 40 concepts in a
session lasting between 20 and 40 min because of com-
binatorial explosion. In another example,Nakamura
et al. (1982)obtained 152 concepts and 265 connec-
tions from five documents on traffic problems in Japan.
Since people have shared concepts, as the number of
concepts increase the rate of increase in total number
of concepts will quickly approach zero. However, we
might expect that one or two new or unique variables
would be mentioned for each new interview (Fig. 2).

2.3. Coding maps into adjacency matrices

According to graph theory, cognitive maps can
be transformed into adjacency matrices in the form
A(D) = [aij ] (Harary et al., 1965), where the vari-
ablesvi (e.g. pollution) are listed on the vertical axis
andvj (e.g. wetlands) on the horizontal axis to form
a square matrix. When a connection exists between
two variables the value is coded in the square matrix
(between−1 and 1). The cognitive map inFig. 3 and
the adjacency matrix inFig. 4 show how the connec-
tions are coded. For example,−0.2 was entered for
a31 because there was a causal decrease fromv3 to v1
(e.g. pollution negatively affected wetlands) (Figs. 3
and 4).

2.4. Social cognitive maps

Based onLaszlo et al. (1996), individual cognitive
maps of interviewees can be augmented, and addi-
tively superimposed (Kosko, 1987, 1992a,b) to form a
social cognitive map. The first step is to create an aug-

 1.Amount 
of wetland 

2. Fish 
Population

3. Pollution 4. Livelihood 5. Laws 

1. Amount of wetland 0 1 -0.1 0.8 0
2. Fish Population 0 0 0 1 0
3. Pollution -0.2 -1 0 -0.2 0
4. Livelihood 0 0 0 0 0
5. Laws 0.2 0.5 -0.5 -0.2 0

Fig. 4. Adjacency matrix coded from the fuzzy cognitive map inFig. 3.
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Name: Su Lake
Gender : F
Age: 40
Interview Date: 12/1/01
Interview Place: MyTown

Work: NGO worker

Stakeholder Group: NGO
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-0.2

-0.2
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Fig. 3. Example fuzzy cognitive map.

mented matrix that includes all the variables from all
the individual cognitive maps. Then each individual
cognitive map is coded into an augmented matrix and
the individual cognitive maps are added together using
matrix addition to create a social cognitive map. If we
choose we can normalize each entry in the augmented
and summed matrix by the number of cognitive maps
included to again put the range of the causal rela-
tionships between−1 and+1 (Kosko, 1992b). When
adding the maps together, conflicting connections
with opposite signs will decrease the causal relation-
ship, while agreement reinforces causal relationships,
forming a consensus social cognitive map.Zhang and
Chen (1988)point out that the differing directions
might be a result of different logical structure and
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suggest the use of a negative–positive–neutral cal-
culus to compute compound values for augmented
maps. In our work, the addition of augmented matri-
ces has been based on the equivalence properties of
fuzzy causal relationships among variables; if arrow
directions are switched, signs need to be switched,
doing these operations does not change system be-
havior (Kim and Lee, 1998). When adding together
the augmented adjacency matrices, interviewee con-
tributions can be scaled either by multiplying their
adjacency matrix by a subjective weight or by as-
signing weights based on the degree of concurrence
(Taber, 1991; Taber and Siegel, 1987). However,
Schneider et al. (1998)point out that weights based
on concurrence might represent conservative maps
at the expense of people thinking differently. In our
research so far we have made the assumption that
all individual maps are equally valid and a weight of
one has been assigned to each individual cognitive
map.

The addition of many different cognitive maps
might yield a better representation of the system
(Eden et al., 1979). Roberts (1973)states that larger
groups of experts yield more accurate and reliable
information. It was not necessary to have an expert
versed in all aspects of the problem, but rather to se-
lect many experts from different disciplines to capture
the system.Nakamura et al. (1982)found that join-
ing of cognitive maps generated useful information
that was not captured by individual maps. Statisti-
cally, large numbers of independent and identically
distributed (i.i.d.) observations will tend to produce
stable edge values (Kosko, 1988), and exponentially
diminishing number of new variables. The i.i.d. as-
sumption is reasonable if separate individuals create
the cognitive maps and they focus on only one sub-
ject, so that the domain focus corresponds to identical
distribution (Kosko, 1987, 1988; Taber and Siegel,
1987).

It should be noted that social cognitive maps repre-
sent only one point in time. A social cognitive map is
not static and evolves as the community itself trans-
forms. Social cognitive maps are “lossy consensus”
that dynamically change over time, loosing parts by
members leaving a community and others joining
in (Carley, 1997). In addition, scientific knowledge
can change, as more becomes known about the study
system.

2.5. Graph theory

Cognitive maps are complex systems because they
are made up of a large number of variables that have
many interconnections and feedback loops. This struc-
ture results in an overall behavior of a system that is
different than the sum of units. The analysis of com-
plex cognitive maps is difficult but the matrix algebra
tools of graph theory provide a way to analyze their
structure. We have found it useful to look at the struc-
ture of the maps and make comparisons among stake-
holder groups. By examining the structure of maps we
can determine how stakeholders view the system, for
example whether they perceive a lot of forcing func-
tions affecting the system which are out of their con-
trol, or whether they see the system as hierarchical or
more democratic.

To analyze a cognitive map, the number of variables
(N) and the number of connections (C) in the map
can be counted. However, graph theory provides us
with many more indices in addition to the number
of variables (concepts, statements) and connections
(intersections, links, edges).

The density (clustering coefficient) of a fuzzy cogni-
tive map (D) is an index of connectivity, which shows
how connected or sparse the maps are

D = C

N(N − 1)

or alternatively,

D = C

N2

To calculate density, the number of connections is
divided by the maximum number of connections pos-
sible betweenN variables (Hage and Harary, 1983). If
variables can have a causal effect on themselves then
maximum number of connections isN2. If the density
of a map is high then the interviewee sees a large num-
ber of causal relationships among the variables. Stake-
holders can be compared to see which groups have
more relationships among variables. If some groups
perceive more relationships, they will have more op-
tions available to change things. Thus these groups
may be a catalyst for change. In addition, oftentimes
experts (government officials, scientists) will belittle
the knowledge of other stakeholders. However, by ex-
amining the structural indices such as density we have
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usually found that other stakeholder groups perceive
as many or more relationships among variables.

The type of variables in a map is important because
it shows how the variables act in relation to the other
variables. In addition, the number of different types of
variables in a cognitive map facilitates an understand-
ing of its structure. The three types of variables are:
transmitter variables (forcing functions, givens, tails),
receiver variables (utility variables, ends, heads), and
ordinary variables (means) (Bougon et al., 1977;
Eden et al., 1992; Harary et al., 1965). These variables
are defined by their outdegree [od(vi)] and indegree
[id(vi)].

Outdegree is the row sum of absolute values of a
variable in the adjacency matrix. It shows the cumula-
tive strengths of connections (aij) exiting the variable,
whereN is the total number of variables:

od(vi) =
N∑

k=1

āik

Indegree is the column sum of absolute values of a
variable. It shows the cumulative strength of variables
entering the variable.

id(vi) =
N∑

k=1

āki

Transmitter variables have a positive outdegree,
od(vi), and zero indegree, id(vi). Receiver variables
have a positive indegree, id(vi), and zero outdegree,
od(vi). Ordinary variables have both a non-zero inde-
gree and outdegree (Bougon et al., 1977). Ordinary
variables can be more or less a receiver or transmitter
variables, based on the ratio of their indegrees and
outdegrees.

The centrality (immediate domain, total degree
[td(vi)]; Harary et al., 1965) of a variable is the
summation of its indegree (in-arrows) and outdegree
(out-arrows) (Bougon et al., 1977; Eden et al., 1992;
Harary et al., 1965):

ci = td(vi) = od(vi) + id(vi)

The contribution of a variable in a cognitive map
can be understood by calculating its centrality, which
shows how connected the variable is to other variables
and what the cumulative strength of these connections
are. In fuzzy cognitive maps, but not binary cogni-
tive maps, a variable can be more central although it

has fewer connections if the connections carry larger
weights (Kosko, 1986).

The total number of receiver variables in a map
can be considered an index of its complexity. Many
receiver variables indicate that the cognitive map
considers many outcomes and implications that are
a result of the system (Eden et al., 1992). However,
a large number of transmitter variables indicates
thinking with top down influences, a “formal hierar-
chical system” (Simon, 1996, p. 185) and also show
“flatness” of a cognitive map where causal arguments
are not well elaborated (Eden et al., 1992). Thus we
can compare cognitive maps in terms of their com-
plexity by the ratios of number of receiver to trans-
mitter variables (R/T). Complex maps will have larger
ratios, because they define more utility outcomes and
less controlling forcing functions.

Another structural measure of a cognitive map is
the hierarchy index (h) (MacDonald, 1983):

h = 12

(N − 1)N(N + 1)

∑
i

[
od(vi) − (∑

od(vi)
)

N

]2

whereN is the total number of variables. Whenh is
equal to 1 then the map is fully hierarchical and when
h is equal to 0, the system is fully democratic.Sandell
(1996)calls these domination (hierarchical) and adap-
tation eco-strategies (democratic) pointing out that
democratic maps are much more adaptable to local
environmental changes because of their high level of
integration and dependence. Stakeholders with more
democratic maps are more likely to perceive that the
system can be changed and thus these stakeholders
can be a starting point for achieving management
objectives.

Thus the first step in analyzing cognitive maps is to
describe and tabulate the number of variables and con-
nections and the graph theory structural indices. The
description and the tables can then be used to com-
pare among different interviewees or different groups
of stakeholders.

Graph theory indices in discrete or continuous
categories can be compared with standard statistical
tests (Palmquist et al., 1997). Comparisons by stan-
dard statistical tests among maps on the same subject
area elicited by the same interviewer are appropriate.
Student’st-test or ANOVA can be used for compar-
isons or the non-parametric Mann–Whitney test can
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Table 1
Graph theory indices for the adjacency matrix shown inFig. 4

Amount of wetland Fish population Pollution Livelihood Enforcement of laws

Amount of wetland 0 1 0.1 0.8 0
Fish population 0 0 0 1 0
Pollution 0.2 1 0 0.2 0
Livelihood 0 0 0 0 0
Enforcement of laws 0.2 0.5 0.5 0.2 0

Column total, indegree 0.4 2.5 0.6 2.2 0
Row total, outdegree 1.9 1 1.4 0 1.4
Centrality 2.3 3.5 2 2.2 1.4
Transmitter 0 0 0 0 1
Receiver 0 0 0 1 0
Ordinary 1 1 1 0 0
No. of variables 5
No. of transmitter variables 1
No. of receiver variables 1
No. of ordinary variables 3
No. of connections 11
Connection/variable 2.2
Complexity receiver/transmitter 1
Density 0.550
Hierarchy index,h 0.203

be used if samples are rejected to be normal based
on Shapiro–Wilk and Kolmogorov–Smirnov Tests of
Normality.

An example of the graph theory calculations for the
fuzzy cognitive map shown inFig. 3 (and adjacency
matrix of Fig. 4) is given inTable 1. In this map vari-
able 5, enforcement of laws, is a transmitter variable
(Fig. 4). The indegree of enforcement of laws is 0 and
the outdegree is 1.5. Enforcement of laws influences
the other variables in this map, but none of the other
variables have an affect on it. Livelihood, variable 3,
on the other hand, is a receiver variable. The outdegree
is 0 and the indegree is 2.2. Thus livelihood is influ-
enced by other variables in this map, but it does not
affect any of the other variables. The other variables
are ordinary variables. The most central variables in
this map are fish population, followed by amount of
wetland and livelihood. In this example, the map is
very small with only five variables. More typical val-
ues are discussed inSection 3.3.

2.6. Comparison of variables in maps

2.6.1. Similarity coefficients
In addition to examining the structure of cognitive

maps through graph theory indices we can compare

cognitive maps of individuals or stakeholders by mak-
ing pair-wise comparisons based on which variables
the maps include. Similarity coefficients such as S2,
S4, or S6 (Gower, 1985in Systat 5.2 manual, 1992),
Phi or YuleQ coefficients can be examined to deter-
mine which individuals or groups of stakeholders are
most similar. S2 is the proportion of the same vari-
ables present in the map, S4 is the proportion of the
same variables either present or absent in the maps,
and S6 is S4 standardized by all possible patterns of
agreement and disagreement. The Phi value indicates
the degree of similarity, where 1 is most similar. The
Yule Q coefficient is the proportionate reduction in er-
rors in predicting whether or not one group has the
variable based on the knowledge that the other group
has that variable. The YuleQ value generally corrob-
orates the results from Phi values. The differences in
S2, S4, or S6 similarity coefficients or Phi and Yule
Q coefficients among groups can be compared with
standard statistical tests. In addition, cluster analysis
may be performed with these similarity coefficients
to determine which individual interviewees or stake-
holder groups are most similar or different based on
the variables in their maps.

In addition to the coefficients of similarity based
on pair-wise comparisons, we have found it useful to
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examine the variables that cognitive maps contain in
three different ways.

2.6.2. Most mentioned variables
First we can order the variables by how many times

they were mentioned in the maps. We would expect
that the most important variables would be the ones
that were mentioned by the most people. This ordering
by the number of times mentioned could be done for
all the maps together, to get an idea of what is most
important for everyone interviewed. It can also be done
for individuals or different groups of stakeholders, to
see the differences and similarities in what variables
are important or not important for the individuals or
different groups.

2.6.3. Most central variables
Second we can order the variables by their cen-

trality. When we do this it is also helpful to tabulate
the components of how much input they receive, their
indegree, and also how much output they give, their
outdegree. The centrality of the variable is not only a
frequency of expression but also how important that
given variable is given the whole structure of the cog-
nitive map. By looking at its indegree and outdegree,
we can also see whether the variable is mainly influ-
encing other variables or if other variables influence
it or both. This analysis can also be done for all the
maps together as well as for individuals or the differ-
ent stakeholder groups.

2.6.4. Variable types
Third, we can separate the variables according to

their type, whether they are a transmitter, ordinary,
or receiver variable and then order them according to
their centrality. The type of variable reveals how peo-
ple think about the variables. For instance, if someone
views a variable as a transmitter variable, it is seen as
a forcing function, which cannot be controlled by any
other variables. In contrast a receiver variable is seen
as not affecting any of the other variables in the system.
Again this analysis can be done for individuals, the dif-
ferent stakeholder groups and for all the maps together.

2.7. Simplifying cognitive maps by condensation

It is difficult to look at a complex cognitive map
with many variables and connections and make sense

of how the map operates. Maps with over 20–30
variables start being counterproductive for gaining
insights. About 12 variables are typical in an anal-
ysis (Buede and Ferrell, 1993). Therefore, the best
way to understand complex maps is to simplify them.
According to graph theory, condensation is an ef-
fective way to simplify complex cognitive maps and
understand their structure. Condensation is done by
replacing subgraphs (consisting of a group of vari-
ables connected with lines) with a single unit (Harary
et al., 1965). When replacing groups of variables,
the connections of variables within subgraphs with
other subgraphs are maintained. Another name for
this grouping and replacement is aggregation.

2.7.1. Quantitative aggregation
Aggregation can be either quantitative or qualita-

tive. In quantitative aggregation one draws the graph-
ical representation of the cognitive map and visually
defines the strong components (re-enforcing cycles) as
subgraphs (Harary et al., 1965). This approach is sim-
ilar to the concept of near-decomposability (Iwasaki
and Simon, 1994).

2.7.2. Qualitative aggregation
In qualitative aggregation variables can be com-

bined by categories that are represented by a larger
encompassing variable. For instance,Nakamura et al.
(1982)condensed 152 variables coded from five docu-
ments into 16 categories. In our research we have also
used qualitative aggregation to subjectively combine
variables into categories. After aggregation, the new
simplified system can be represented as a cognitive
interpretation diagram (CID), where the connections
are drawn so that they reflect the weight and sign of
the causal relationships, similar to the previously de-
veloped neural interpretation diagram (NID) (Özesmi
and Özesmi, 1999).

An example of a CID, where 253 variables from the
social cognitive map of the stakeholder group local
people were qualitatively aggregated into 17 different
categories or aggregated variables, is shown inFig. 5
(Özesmi, 2001b). The thickness of the line is related
to the strength of the relationship, with stronger rela-
tionships shown by thicker lines. Negative causal re-
lationships are shown as dashed lines, positive causal
relationships are shown as solid lines. When drawing
the CID, only the strongest connections were shown.
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Fig. 5. Example of a cognitive interpretation diagram (CID) of the
condensed social map of one stakeholder group (Özesmi, 2001b).

In this case the number of connections was subjec-
tively chosen to be 35 as this allows the relationships
to be examined without being too cluttered. If an ag-
gregated variable is not connected to any other aggre-
gated variables, it shows that the connections of that
aggregated variable are not among the strongest 35
connections. If an aggregated variable is shown with
an “X” over it, it shows that members of this stake-
holder group did not mention the variables in this con-
densed category, although it was present in the maps of
other stakeholder groups. By looking at the condensed
cognitive map of this stakeholder group, we can easily
see what the perceptions of this group are. For exam-
ple, the strongest relationship in the map is industry
increasing lake pollution. Other strong positive rela-
tionships are agriculture increasing income but also
increasing lake pollution. Ecosystem health also in-
creases income. Strong negative relationships are lake
pollution, hunting, and industry decreasing ecosystem
health. By creating condensed cognitive maps for dif-
ferent individuals or different stakeholder groups we

can easily see in a few figures what aggregated vari-
ables and relationships are most important to them and
their similarities and differences.

2.8. Cognitive map inferences

After the cognitive maps are drawn and the adja-
cency matrix coded, it is possible run the model to see
where the system will go if things continue as they are,
that is, to determine the system’s steady state. These
calculations are made using the auto-associative neu-
ral network method (Reimann, 1998). This computa-
tional method is not necessarily concerned about the
structure, but the outcome, or inference (Kosko, 1987),
of the map.

In the neural network computational method, a vec-
tor of initial states of variables (In) is multiplied with
the adjacency matrix A of the cognitive map. The
matrix values are of variable strength, which are rep-
resented by real numbers. The lines carry the input
from one variable (what is called a point, node, or
unit) to another activating the unit. The contribution
of one connection to the unit is the product of the
activity on the line and the value of the connection
strength. The total input to the unit is the sum of all
the individual products (Fig. 6). Lines can be positive
or negative. Positive connections add to the activity
total, while negative connections subtract from it.
The output of the unit is a function of the total input.
Usually a threshold function or a transformation by a
bounded monotonic increasing function is applied to
the result of the matrix multiplication,In ×A, at each
simulation time step (Kosko, 1987, 1992b). Logistic,
linear threshold or step functions are commonly used

Fig. 6. A simulated unit representing a variable in the cognitive
model. Black arrows represent positive signed connections and
gray ones negative signed connections. All inputs are multiplied
by the weights of connections and then summed. The summation
is input into a monotonic increasing function. The result is then
output to other connected units.
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activation functions. Typically we have used a logistic
function 1/(1 + e−1×x) to transform the results into
the interval [0, 1]. This non-negative transformation
allows for a better understanding and representation of
activation levels of variables. It also enables a qualita-
tive comparison among the causal output of variables.
The resulting transformed vector is then repeatedly
multiplied by the adjacency matrix and transformed
until the system converges to a fixed point. Typically
it converges in less than 30 simulation time steps.
All the models we have run have ended in a stable
state but theoretically they could have also settled
into a limit cycle, or chaotic attractor (Dickerson and
Kosko, 1994).

An example of a steady state calculation and a simu-
lated policy option calculation for the FCM fromFig. 3
is shown inTable 2. From the steady state calculation
we can get an idea of the ranking of the variables in
relationship to each other according to how the sys-
tem is perceived in the FCM. For example,Table 2
shows that in the steady state, pollution is relatively
lower than fish population or livelihood. Thus in this
wetland system, pollution is not severely harming the
fish population or the livelihood.

2.9. Policy option simulations

It is also possible to ask “what–if” questions and
make runs to determine what state the system will go to

Table 2
Calculation of steady state for the FCM shown inFig. 3

Amount of wetland Fish population Pollution Livelihood Enforcement of laws

Amount of wetland 0 1 −0.1 0.8 0
Fish population 0 0 0 1 0
Pollution −0.2 −1 0 −0.2 0
Livelihood 0 0 0 0 0
Enforcement of laws 0.2 0.5 −0.5 −0.2 0

FCM simulation
Initial state vector 1 1 1 1 1

0.5 0.52497919 0.47003595 0.569546224 0.5
0.50029964 0.51399455 0.48500450 0.536483643 0.5
0.500149955 0.51326165 0.48500300 0.535800301 0.5
0.50014997 0.51325424 0.48500375 0.535757901 0.5
0.500149963 0.51325421 0.48500375 0.535757526 0.5

Steady state 0.500149963 0.51325421 0.48500375 0.535757524 0.5
0.500149963 0.51325421 0.48500375 0.535757524 0.5
0.500149963 0.51325421 0.48500375 0.535757524 0.5

under different conditions or if different policy options
are implemented (Kosko, 1987). These calculations
can be made on individual cognitive maps, group, or
social cognitive maps and the resulting system states
compared.

Two characteristics of cognitive maps become ap-
parent when making these runs. The first one is their
emergent properties. The sum of the results of indi-
vidual cognitive maps is not the same as the result
from the run of the social cognitive map. The sec-
ond characteristic of cognitive maps is related and
shows the possibility of synergistic interaction among
different management or policy options. That is, the
effect of implementing two different policy options
at the same time is not simply the sum of imple-
menting each policy option separately and adding the
results.

In an example of a policy option run, the enforce-
ment of laws is clamped at a high level (1). If the dif-
ference between enforcement of laws at a high level
and steady state is calculated, according to this FCM
having high enforcement of laws will increase the fish
population and reduce pollution (Table 3). The amount
of wetland increases slightly and the amount of liveli-
hood decreases slightly but these variables are affected
by the enforcement of laws less than fish population
and pollution.

Fig. 7 shows how different policy options would
affect important variables in a system according to
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Table 3
Run of policy option enforcement of laws for the FCM shown inFig. 3

Amount of wetland Fish population Pollution Livelihood Enforcement of laws

FCM simulation
Initial state vector 1 1 1 1 1

0.5 0.524979187 0.470035948 0.569546224 1
0.505299442 0.526473423 0.472527696 0.531506799 1
0.505274527 0.526613412 0.472501279 0.531767523 1
0.505274792 0.526613487 0.472501403 0.531773764 1
0.50527479 0.526613494 0.472501401 0.531773777 1
0.50527479 0.526613494 0.472501401 0.531773778 1
0.50527479 0.526613494 0.472501401 0.531773778 1
0.50527479 0.526613494 0.472501401 0.531773778 1

Difference between strong enforcement of laws and steady state
0.005124827 0.013359289 −0.012502348 −0.003983746 0.5

the perceptions of the interviewees. The height of
the bars in the chart show the relative difference
between the values of the variable given the policy
option and given the steady state. Different policy
options can be compared in a chart format such as
this to see which would have the most affect on the
variables of interest and to see the relative effects
of different policy options. In this example, com-
pletely eliminating domestic wastes results in the
greatest reduction in lake pollution and the largest
increase in lake protection. Sewage treatment has
the next largest effect on lake pollution and lake
protection.

Fig. 7. Chart showing the relative effects of different policy options
on lake ecosystem variables.

3. Discussion

3.1. Examples from our research

Özesmi (1999a,b)used FCM to examine the views
of different stakeholders in an environmental con-
flict. Government and non-governmental organization
(NGO) officials wanted to create a national park
to protect an important wetland delta ecosystem on
the coast of north central Turkey while local peo-
ple opposed this plan. In this case FCM was useful
to obtain the opinions of the different stakeholders.
The transparency of this method made it less suspect
than questionnaires for local people. Local people
had a significantly larger numbers of variables, more
complex maps, and mentioned more variables that
controlled the ecosystem than did NGO and gov-
ernment officials. Local people also mentioned more
variables related to agriculture and animal husbandry,
their main sources of livelihood. From the FCM anal-
ysis the sources of conflict were made quite clear and
lessons learned from the analysis have been applied
to other conservation projects.

Özesmi (2001a)used FCM to obtain the wants and
desires of people that were to be displaced by a con-
struction of a large hydroelectric dam during and after
resettlement. By obtaining their opinions on what
would most increase their welfare, the compensation
could focus specifically on what displaced people
wanted. In addition, through policy option simula-
tions, it was possible to determine which policies
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and combination of policies would increase the wel-
fare of the people the most, according to their own
perceptions.

Özesmi and Özesmi (2001, 2003)used FCM of dif-
ferent stakeholder groups to facilitate creation of a
participatory environmental management plan for an
important wetland ecosystem in northwestern Turkey.
With the FCM analysis it was possible to determine
what the most important goals were for the different
stakeholders and to design the management plan ac-
cordingly. This enabled support for and participation
in the activities of the management plan by the stake-
holders.

Yalçın and Seçme (2001)used FCM to obtain the
opinions of middle and high-level managers about the
problems and opportunities for local industry in Kay-
seri, Turkey. High-level managers were focusing more
on financial variables whereas middle level managers
were focusing on operations and quality. Both levels
of managers did not mention any variables related to
the environment.

Dadaser and Özesmi (2001)and Dadaser (2002)
used FCM to compare the perceptions of local people,
NGO and government officials concerning a salt lake
ecosystem in central Turkey. From the analysis the
concerns of local people came out and potential barri-
ers to conservation plans were discovered. Sixty-five
different policy option simulations were done based
on stakeholders’ input.

Dadaser and Özesmi (2002)used FCM to an-
alyze stakeholder perceptions about a wetland of
international importance in central Turkey. This re-
search again highlighted the importance of livelihood,
including agriculture, animal husbandry, reed cut-
ting and tourism, to people living around wetland
ecosystems in Turkey. The study emphasized the
need for conservation strategies that not only achieve
ecosystem conservation but also support sustain-
able economic activities and increase local people’s
welfare.

3.2. Structure of cognitive maps

Comparing the number of variables and indices
of cognitive maps across different subject areas and
interviewers should be done with caution, because
cognitive maps are dependent on the length of text or
duration of interview and the skill of the interviewer

(Eden et al., 1992). Thus values from the literature
from different studies on the number of variables,
connections and other graph theoretical indices are
shown only to give readers an approximate idea
(Tables 4 and 5). However, we found out that if a
standard methodology is used the structural indices of
the maps from separate studies are in the same range
(Tables 6 and 7). In our research, which included the
six different studies described previously, the average
time for completing a cognitive map varied from 40
to 90 min (Table 6). These individual cognitive maps
contained on average 23±2 S.D. variables with 37±7
S.D. connections. The average number of transmitter
variables in the individual cognitive maps were 8± 3
S.D. and in receiver and ordinary variables 4± 3 and
11± 3 S.D., respectively. The number of transmitter
variables was almost always higher than the number
of receiver variables in both the individual and social
cognitive maps. This indicates that the interviewees
perceived the systems as having more forcing func-
tions than utility variables. The number of receiver
to transmitter variables averaged 0.6 ± 0.3 S.D. in
the individual cognitive maps. The majority of the
variables were always ordinary variables for both the
social and individual cognitive maps. The number of
connections per variable in the individual maps was
on average 1.6±0.3 S.D. The average density and hi-
erarchy indices were 0.08±0.03 and 0.05±0.02 S.D.,
respectively. The density indicates relatively sparse
maps and the hierarchy index indicates that the maps
are much more “democratic” than “hierarchical”.
Generally the graph theory indices showed more
variation among the social cognitive maps compared
to the average of the individual maps in the various
studies.

3.3. Model validation

Interviewees may draw cognitive maps that empha-
size different parts of a system based on their expe-
riences, which need not imply that some maps are
wrong or less representative than others. Formal vali-
dation of these cognitive maps is not possible because
the maps operate on different understandings of the
system. They are qualitative models that do not yield
outputs directly measurable in nature. The question of
whether some cognitive maps represent reality better
than others might not be possible because the reality
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Table 4
Values for the number of variables, number of connections, and graph theory indices from the literature

Source

Malone (1975)a,b Hart (1977)c Klein and
Cooper (1982)c

Langfield-Smith
(1992)

Cossette and
Audet (1992)b,c

Brown (1992) Eden et al. (1992) Carley and
Palmquist (1992)

Craiger et al.
(1996)b

Subject Urban
development

Latin American
politicians

Army battle
simulation

Qualities of fire
protection officer

Small business
environment

Business strategy Job
satisfaction

No. of maps,n 8 students
created 1 map

3 14 2 1 116 1

No. of variables per map,N 22 37, 34, 37 19± 5 16, 19 57 32 modal average
(range: 14–59)

30–40 22

No. of transmitter variables 13 4
No. of receiver variables 10 2
No. of ordinary variables 34 16
No. of connections,C 29 43, 48, 50 27± 9 21, 24 87 47
Connection/variable 1.32 1.4± 0.2 1.53 Typically 1.15–1.20 2.14
Reciever/transmitter 0.77 0.5
Density, D 0.063 0.089± 0.043 0.027 0.102
Hierarchy index,h 0.0194
Time (min) 150 75 modal average 20–40

a Social cognitive mapping exercise.
b We calculated graph theory indices or the average and S.Ds.
c Map(s) coded from text.
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Table 5
Values from the literature for the total number of variables across all maps, total number of connections, and graph theory indices

Source

Carley and Palmquist (1992) Carley and Palmquist (1992) Nakamura et al. (1982)a,b

Subject Tutor selection Research writing Traffic problems in Japan
No. of maps,n 45 29 5
Total number of variables across

all maps
217 244 152

Total number of connections,C 265
Connection/variable 1.74
Density,D 0.01

a Map(s) coded from text.
b We calculated the density and connections per variable.

with which the model outputs are compared is medi-
ated through yet another understanding. For example,
in a study of the Kizilirmak Delta wetland ecosys-
tem in Turkey (Özesmi, 1999a) villagers disputed
the level of biodiversity assessed by researchers and
said that only commonly breeding birds can be used
for evaluating the importance of the delta for bird
species. Researchers had assessed use of the delta by
both breeding and migrating birds.

However, where two expert opinions are to be com-
pared, how well they fit reality can be compared in a
qualitative manner. In addition a qualitative validation
can be made in terms of a “reality check” rather than
formal validation. For example, if a map predicts a
crash in fish populations and fishing people are having
record harvests year after year, then obviously some-
thing is wrong with the construction of the model.
Also see Hobbs et al. (2002), who adjusted their
model to ensure that its behavior was qualitatively
consistent with empirically established relationships.
Therefore some level of validation can be achieved.
In these cases,Klein and Cooper (1982)found that
the performance of the cognitive map is independent
of the number of variables or relationships. So cog-
nitive maps can be representing reality successfully
even if they are not highly complex. One might ex-
pect that cognitive map performance is bell-shaped
from simplicity going to complexity as postulated by
Jørgensen (1994)for ecological models. However,
the issue has not been researched enough yet and
there is space to determine the performance of cogni-
tive maps depending on their density, hierarchy, and
complexity.

3.4. Advantages and disadvantages of cognitive
maps

The main advantages of cognitive maps include:
(1) the ability to allow feedback processes (Kosko,
1987), (2) the ability to deal with many variables
which may be not well-defined (Kosko, 1986), (3)
ability to model relationships between variables that
are not known with certainty, but can be described
in degrees such as a little or a lot (Kosko, 1986), (4)
the ability to model systems where scientific infor-
mation is limited but expert and/or local knowledge
is available, (5) ease and speed with which cognitive
maps may be obtained (Kosko, 1992a,b; Taber, 1991)
and reach similar results with lower sample sizes as
compared to other techniques (Özesmi, 2001a), (6)
ease and speed with which many different knowledge
sources can be combined (Kosko, 1992a), including
expert and local knowledge, (7) ease and speed of
modeling the system and the effect of different policy
options.

The disadvantages of cognitive maps are: (1) the
interviewees’ knowledge, ignorance, misconceptions
and biases are all encoded in the maps (Kosko, 1992b),
unless these presumed ignorance and misconceptions
are the subject of study, (2) although what–if’s can be
modeled in FCMs why’s cannot be determined (Kim
and Lee, 1998), (3) they do not provide real-value
parameter estimates or inferential statistical tests
(Craiger et al., 1996), (4) lack of a concept of time
(Schneider et al., 1998); that is, they cannot model
transient behavior (Hobbs et al., 2002), (5) they can-
not deal with co-occurrence of multiple causes such
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Table 6
Number of variables, number of connections, and graph theory indices for individual cognitive maps from our research

Individual cognitive maps

Kizilirmak Delta
(Özesmi, 1999a,b)

Yusufeli
(Özesmi, 2001a)

Uluabat Lake
(Özesmi and Özesmi, 2001)

Kayseri Industry
(Yalçın and Seçme, 2001)

Sultan Marshes
(Dadaser and Özesmi, 2002)

Tuzla Lake
(Dadaser and Özesmi, 2001)

Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

No. of maps,n 31 13 35 30 56 44
No. of variables,N 19 7 24.2 5.7 24.5 9.6 21.4 6.1 24.4 4.4 24.9 8.4
No. of transmitter variables,T 7 4.3 9.1 3.2 7.8 4.7 5.2 3.4 7 1.5 9.4 3.8
No. of receiver variables,R 3 2.4 1.6 1.1 2.8 2.6 3.1 2.5 8 2.6 7.8 3.1
No. of ordinary variables,O 8.9 3.3 13.5 6.5 13.9 6.6 13.1 4.9 9.7 3.8 7.8 5.1
No. of connections,C 28.3 10.6 43.6 17.6 43.7 22.1 43.5 14.8 31.3 8.4 31.2 26.6
Connection/variable,C/N 1.64 0.95 1.76 0.51 1.8 0.6 2.07 0.6 1.3 0.2 1.2 0.5
Complexity, R/T 0.522 0.492 0.228 0.252 0.435 0.466 0.6 0.7 0.989 0.476 0.923 0.497
Density, D 0.112 0.109 0.078 0.022 0.087 0.041 0.11 0.05 0.055 0.008 0.051 0.017
Hierarchy index,h 0.082 0.135 0.025 0.014 0.043 0.049 0.08 0.11 0.045 0.033 0.036 0.035
Average time (min) 90 56 15 41 40 43
Minimum time (min) 45 35 25 20 20
Maximum time (min) 240 95 90 90 175
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Table 7
Values for the number of variables, number of connections, and graph theory indices for social cognitive maps from our research

Social cognitive maps

Kizilirmak Delta
(Özesmi, 1999a,b)

Yusufeli
(Özesmi, 2001a)

Uluabat Lake
(Özesmi and Özesmi, 2001)

Kayseri Industry
(Yalçın and Seçme, 2001)

Sultan Marshes
(Dadaser and Özesmi, 2002)

Tuzla Lake
(Dadaser and Özesmi, 2001)

Subject Conflict over
protection for a
wetland

Wants and desires of people
affected by resettlement

Participatory management
plan for Uluabat Lake
ecosystem

Problems and opportunities
of small industry

Sultan Marshes wetland
ecosystem

Tuzla Lake wetland
ecosystem

No. of maps,n 31 13 35 30 56 44
No. of variables,N 136 97 253 135 181 204
No. of transmitter variables,T 27 24 69 14 31 51
No. of receiver variables,R 9 2 8 9 32 20
No. of ordinary variables,O 100 71 176 112 118 133
No. of connections,C 616 360 1173 948 773 864
Connection/variable 4.616 3.711 4.636 7.02 4.27 4.24
Complexity, R/T 0.333 0.083 0.116 0.64 1.03 0.39
Density, D 0.033 0.038 0.018 0.05 0.024 0.021
Hierarchy index,h 0.026 0.0485 0.0107 0.08 0.118 0.0242
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as expressed by “and” conditions (Schneider et al.,
1998), (6) “if, then” statements cannot be coded.

The first disadvantage can be partially over-
come by adding many cognitive maps together (see
Section 2.3). By combining the maps of many experts
or informed local people the accuracy of the map
can be improved. The strong law of large numbers
ensures that the knowledge estimate improves with
the number of experts if the experts are viewed as in-
dependent (unique) random knowledge sources with
finite variance (bounded uncertainty) and identical
distribution (same problem-domain focus) (Dickerson
and Kosko, 1994).

The second disadvantage that FCM’s do not show
“why’s” can be partially overcome by examining cog-
nitive interpretation diagrams where it is easier to trace
the causal relationships from variable to variable. We
can see what causal relationships are most important
and how the variables affect other variables.

4. Conclusions

In our experience the advantages of using multi-step
FCM outweigh its disadvantages. In particular we have
found it useful for obtaining the perceptions of differ-
ent people in different stakeholder groups concerning
an ecosystem. This allows for more appropriate con-
servation strategies and management plans to be made.
We found that when FCMs were created with a stan-
dard methodology the structural indices of the maps
were close to each other even across separate studies.
This result suggests that FCMs could be used in a
meta analysis, to compare for example people’s per-
ceptions of ecological systems in different areas. As a
modeling tool, FCMs have not been exploited to their
full capacity in ecology. However, cognitive mapping
has some important advantages for ecological problem
solving and decision-making, especially when many
stakeholders are involved. With cognitive mapping
complex and abstract variables that cannot easily be
measured but are important to decision-making can be
modeled. This approach is especially appropriate for
data poor situations. The opinions of many different
experts and local knowledge can be combined. The
effects of different policy options can be simulated
quickly and easily as part of the multi-step modeling
approach.
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